K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a) 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1. Vì a và b là 2 số nguyên tố cùng nhau nên ƯCLN(a ; b) = 1

b) Gọi d là ƯCLN(2n + 5 ; 3n + 7)

Vì d là ƯCLN(2n + 5 ; 3n + 7) nên :

2n + 5 chia hết cho d => (2n + 5) x 3 = 6n + 15 chia hết cho d

3n + 7 chia hết cho d => (3n + 7) x 2 = 6n + 14 chia hết cho d

Hiển nhiên 2 số liên tiếp có ước chung lớn nhất là 1. Mà 6n + 15 và 6n + 14 là 2 số liên tiếp nên 6n + 15 và 6n + 14 có ước chung lớn nhất là 1 => d = 1 ( không có d lớn hơn hay nhỏ hơn ngoài d = 1)

Mà d là ƯCLN(2n + 5 ; 3n + 7) nên 1 là ƯCLN(2n + 5 ; 3n + 7) nên 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau

K NHA BẠN IU

24 tháng 11 2022

Câu 1: 

=>n(n+1)=1275

=>n^2+n-1275=0

=>\(n\in\varnothing\)

Câu 2:

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b: Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

12 tháng 1 2018

Gọi ƯCLN (4n+3;5n+1) = d ( d thuộc N sao )

=> 4n+3 và 5n+1 đều chia hết cho d

=> 5.(4n+3) và 4.(5n+1) chia hết cho d

=> 20n+15 và 20n+4 đều chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1;11}

Mà a và b ko phải 2 số tự nhiên nguyên tố cùng nhau nên d khác 1

=> d = 11

=> ƯCLN (a,b) =11

Tk mk nha

12 tháng 1 2018

Ta có; 4n+3=> 5.[4n+3]=>20n+15                                                             Gọi UCLN(a, b) là d

           5n+1=>4.[5n+1]=> 20n+4

=>d= [20n+15 ] - [  20n+4] chia hết cho 11

=>d=11 [ vì a,b là 2 số thuộc N ko nguyên tố cùng nhau]

           

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

12 tháng 11 2017

a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.

Gọi( 2n+ 1; 2n+ 3)= d.

=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.

=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.

=> 2n+ 3- 2n- 1\(⋮\) d.

=> 2\(⋮\) d.

=> d\(\in\){ 1; 2}.

Mà 2n+ 1 không\(⋮\) 2.

=> d= 1.

=>( 2n+ 1; 2n+ 3)= 1.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

b) Gọi( 2n+ 5; 3n+ 7)= d.

=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.

Ta có: 2n+ 5\(⋮\) d.

=> 3( 2n+ 5)\(⋮\) d.

=> 6n+ 15\(⋮\) d( 1).

3n+ 7\(⋮\) d.

=> 2( 3n+ 7)\(⋮\) d.

6n+ 14\(⋮\) d( 2).

Từ( 1) và( 2), ta có:

( 6n+ 15)-( 6n+ 14)\(⋮\) d.

=> 6n+ 15- 6n- 14\(⋮\) d.

=> 1\(⋮\) d.

=> d= 1.

=>( 2n+ 5; 3n+ 7)= 1.

Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.

12 tháng 11 2020

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

19 tháng 11 2017

a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

19 tháng 11 2017

a ,Gọi 2 số lẻ là 2k+1 ; 2k+2 

Gọi Ư CNN  2k+1 và 2k+3 là d 

ta có :

2k+3-2k+1=2 

d thuộc  ƯC (2) ={1;2}

Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ 

Vậy d = 1

b,Gọi ƯCNN 2n+5và 3n+7 là d 

ta có :

3 .( 2n + 5  )chia hết cho d. =6n+15 chia hết cho d

2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d

(6n + 15 ) - ( 6n + 14 )  = 6n +15  - 6n -14 =1 

d thuộc ƯC (1 ) ={1}

Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau

25 tháng 1 2015

1.a) goi d la uoc chung cua 2n+1 va 2n+3

Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d 

 Suy ra (2n+3)-(2n+1) chia het cho d 

             Suy ra 2 chia het cho d

             MA d la uoc cua mot so le  nen d=1

VAy 2n+1 va 2n+3 la so nguyen to cung nhau.

b) Goi d la uoc chung cua 2n+5 va 3n+7

Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d

Suy ra 3(2n+5)-2(3n+7) chia het cho d

Suy ra 6n+15-6n-14 chia het cho d

Suy ra 1 chia het cho d

Suy ra d=1

Vay 2n+5 va 3n+7 la so nguyen to cung nhau.

Cau 2)

Vi 2n+1 luon luon chia het cho 2n+1

Suy ra 2(2n+1) chia het cho 2n+1

Suy ra 4n+2 chia het cho 2n+1(1)

Gia su 4n+3 chia het cho 2n+1 (2)

Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1

suy ra 1 chia het cho 2n+1

suy ra 2n+1 =1

           2n=0

                n=0

Vay n=0 thi 4n+3 chia het cho 2n+1.