K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Ta có :  \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}+\frac{2ab}{ab}\)

\(=\frac{\left(a^2+2ab+b^2\right)}{ab}\)

\(=\frac{\left(a+b\right)^2}{ab}\ge0\)( luôn đúng với a >b > 0 )

Dấu "=" xảy ra khi :  \(a+b=0\Leftrightarrow a=-b\)

Vậy ....

23 tháng 6 2018

Easy làm luôn :)

a0 Ta có: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{a^2+b^2}{ab}\ge2\)

vì \(a>0;b>0\left(gt\right)\Rightarrow ab>0\)nên ta có:

\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow ab.\frac{a^2+b^2}{ab}\ge2ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Vậy

17 tháng 3 2019

\(\frac{a}{b}+\frac{b}{a}=2\)

\(\frac{a}{b}-1+\frac{b}{a}-1=0\)

\(\frac{a-b}{b}+\frac{b-a}{a}=0\)

\(\frac{a^2-ab+b^2-ba}{ab}=0\)

\(\frac{\left(a-b\right)^2}{ab}=0\) (1)

\(\left(a-b\right)^2\ge0\)(khi a = b) và a>0, b>0 nên (1) >0

vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

17 tháng 3 2019

sửa giùm chỗ (1) ≥ 0 chứ không phải (1) > 0

26 tháng 1 2019

mik ví dụ 1 biểu thức nha

a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c

tương tự với mấy biểu thức còn lại

26 tháng 1 2019

cái bài này mik làm rồi mà giờ ko nhớ nữa

15 tháng 11 2018

Giúp em với ak !!!

23 tháng 11 2018

D B A C H

a)    

 +  Xét ∆AHB và ∆DBH có :

             BH chung 

             góc AHB = góc DBH = 900

              AH = DB

=>   ∆AHB = ∆DHB ( c.g.c )

   => ĐPCM

b)  Vì ∆AHB = ∆DHB ( cmt )

=>   góc ABH = góc DHB

và chúng ở vị trí SLT 

=>   AB / / DH   ( đpcm )

c)  Ta có :

          góc ABH + góc BAH = 900  ( vì ∆ ABH vuông tại H )

Lại có :   góc ABH + góc ACB = 900 ( vì ∆ABC vuông tại A )

    =>  góc BAH = góc ACB = 350 

25 tháng 9 2020

viết thư gửi mẹ ở trên trời:

Hà Nội, ngày...tháng....năm.....

"Chắc ở nơi nào đó, mẹ cũng vui vì nhìn thấy con hạnh phúc và trưởng thành hơn. Cũng lâu lắm rồi, con không lên thắp hương cho mẹ, con thật có lỗi. Sống ở đây, con được ba lo cho rất đầy đủ, nhưng đôi khi con lại muốn cảm giác được mẹ chăm sóc khi còn nhỏ hơn, ước gì có thể quay ngược lại thời gian để con ngập tràn trong phút giây đó.

Con vẫn chưa nói 'Con yêu mẹ' được và đây là điều hối tiếc nhất trong cuộc đời con. Nhưng con biết mẹ sẽ hiểu được tấm lòng của con vì con ít khi thể hiện sự yêu thương bằng lời nói mà chỉ thể hiện bằng những thành quả mà con đạt được.

Mọi chuyện đều do định mệnh nên mẹ đừng buồn, cả nhà luôn yêu thương mẹ. Nếu có kiếp sau con muốn làm con của mẹ một lần nữa.

Yêu mẹ! Chúc mẹ luôn hạnh phúc ở phương xa".

25 tháng 9 2020

giải nhầm bài

22 tháng 1 2018

Có : (a-b)^2 >= 0 

<=> a^2+b^2 >= 2ab

<=> (a+b)^2 >= 4ab ( cộng mỗi vế thêm 2ab )

Với a,b > 0 thì chia cả 2 vế cho ab.(a+b) được :

a+b/ab >= 4/a+b

<=> 1/a + 1/b >= 4/a+b

Tương tự : 1/b + 1/c >= 4/b+c ; 1/c + 1/a >= 4/c+a

=> 2.(1/a+1/b+1/c) >= 4.(1/a+b + 1/b+c + 1/c+a)

<=> 1/a + 1/b + 1/c >= 2.(1/a+b + 1/b+c + 1/c+a)

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

Tk mk nha

5 tháng 7 2019

Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự với hai bđt kia rồi nhân theo vế suy ra

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:

\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1/2