Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đoạn thẳng chứ nhỉ??
*Công thức: \(\frac{n\left(n+1\right)}{2}\)
_Giải:
-Ta có: 2 điểm vẽ 1 đt
=> n điểm sẽ vẽ đc n-1 đt
-Lược bỏ những đt trùng nhau
=>Số đt có là: [n(n-1)]/2(đoạn thẳng)
b/
-Ta có: \(\hept{\begin{cases}5\widehat{B}+\widehat{A}=180^o\left(1\right)\\2\widehat{B}+\widehat{A}=90^o\left(2\right)\end{cases}}\)
-Lấy: (1) trừ (2) vế theo vế.
-Ta được: \(\hept{\begin{cases}3\widehat{B}=90^0\\\widehat{A}=90^0-2\widehat{B}\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{B}=30^0\\\widehat{A}=90^0-60^0=30^0\end{cases}}}\)
-Vậy: \(\widehat{A}=\widehat{B}=30^0\)
a) 2A=2^2+2^3+...+2^100
A= 2A-A= 2^100-2 không phải là số chính phương
A+2 = 2^100 là số chính phương
b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A
c) 2100 - 2 = 299.2-2=833.2 -2 => n rỗng
d) ta có: 24k chia 7 dư 2
2100-2 = 24.25-2 chia hết chp 7
e) ta có: 24k chia 6 dư 4
2100-2 = 24.25-2 chia 6 dư 2
f) ta có: 24k tận cùng 6
2100-2 = 24.25-2 tận cùng 4
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)