K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

a,Đoạn thẳng chứ nhỉ??

*Công thức:  \(\frac{n\left(n+1\right)}{2}\)

_Giải:

-Ta có: 2 điểm vẽ 1 đt

=> n điểm sẽ vẽ đc n-1 đt

-Lược bỏ những đt trùng nhau

=>Số đt có là: [n(n-1)]/2(đoạn thẳng)

b/

-Ta có:  \(\hept{\begin{cases}5\widehat{B}+\widehat{A}=180^o\left(1\right)\\2\widehat{B}+\widehat{A}=90^o\left(2\right)\end{cases}}\)

-Lấy: (1) trừ (2) vế theo vế.

-Ta được: \(\hept{\begin{cases}3\widehat{B}=90^0\\\widehat{A}=90^0-2\widehat{B}\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{B}=30^0\\\widehat{A}=90^0-60^0=30^0\end{cases}}}\)

-Vậy: \(\widehat{A}=\widehat{B}=30^0\)

15 tháng 6 2019

a) 2A=2^2+2^3+...+2^100

A= 2A-A= 2^100-2 không phải là số chính phương

A+2 = 2^100 là số chính phương

b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A

c) 2100 - 2 = 299.2-2=833.2 -2  => n rỗng

d) ta có: 24k chia 7 dư 2 

2100-2 = 24.25-2 chia hết chp 7

e) ta có: 24k chia 6 dư 4

2100-2 = 24.25-2 chia 6 dư 2

f) ta có: 24k tận cùng 6

2100-2 = 24.25-2 tận cùng 4

15 tháng 6 2019

Cảm ơn bạn nhé :))

14 tháng 12 2016

lay o toan boi a

 

15 tháng 12 2015

ai tick cho mik lên 250 điểm hỏi đáp với.

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

10 tháng 5 2016

1/ So sánh A với \(\frac{1}{4}\)

Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)

\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)

Vậy \(A>\frac{1}{4}\)