Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
a:
b: PTHĐGĐ là:
2x^2-(2m-2)x+m-1=0
Δ=(2m-2)^2-4*2*(m-1)
=4m^2-8m+4-8m+8
=4m^2-16m+12
=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)
Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0
=>m>3 hoặc m<1
a) Ta có: đồ thị hàm số y=ax+b đi qua điểm A (2:1)
=> 2a+b=1 (1)
Lại có: đồ thị cắt trục tung tại điểm có tung độ bằng 5
=> b=5 (2)
Từ (1) và (2) ta có: 2a+5=1
=> a= -2
b) Gía trị của m để (P) và (d) có 1 điểm chung duy nhất là
3x2 =2x+m
=> 3x2-2x-m
\(\Delta'=1+3m\)
=> m= -1/3
Tọa độ điểm chung là:
3x2=2x-1/3
=> 3x2-2x+1/3
=> x=1/3
thay x=1/3 vào vào parabol (P) ta đc: y= 3(1/3)2
y=1/3
=> Tọa độ ddiemr chung là (1/3; 1/3)
Đề bài : Xác định parabol \(y=ax^2+bx+c\left(a\ne0\right)\), biết rằng đỉnh của parabol đó có tung độ bằng -25, đông thời parabol đó cắt trục hoành tại 2 điểm A(-4;0) và B(6;0).
Tọa độ đỉnh cảu (P) : \(I\left(\frac{-b}{2a};\frac{-\left(b^2-4ac\right)}{4a}\right)\)
Mà (P) đi qua A và B nên ta có hệ : \(\hept{\begin{cases}\frac{4ac-b^2}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{cases}}\)
Giải hệ này được \(\hept{\begin{cases}a=1\\b=-2\\c=-24\end{cases}}\). Vậy \(\left(P\right):y=x^2-2x-24\)
Em nghĩ nên sửa đề thành Parabol đi qua điểm (3;3) thì bài toán mới giải được ạ
Parabol đi qua điểm (3;3) nên ta có:
\(3=\left(2m-1\right)\cdot3^2\Rightarrow2m-1=\frac{1}{3}\)
\(\Leftrightarrow2m=\frac{4}{3}\Rightarrow m=\frac{2}{3}\)
Khi đó ta được parabol \(y=\frac{x^2}{3}\)
Đường thẳng song song với trục hoành cắt trục tung tại điểm có tung độ là 4 => y = 4
Khi đó \(4=\frac{x^2}{3}\Rightarrow x^2=12\Rightarrow\orbr{\begin{cases}x=2\sqrt{3}\\x=-2\sqrt{3}\end{cases}}\)
G/s A nằm ở phía dương, B ở phía âm đối với trục hoành thì khi đó tọa độ của A và B là: \(\hept{\begin{cases}A\left(2\sqrt{3};4\right)\\B\left(-2\sqrt{3};4\right)\end{cases}}\)
\(\Rightarrow AB=\left|2\sqrt{3}\right|+\left|-2\sqrt{3}\right|=4\sqrt{3}\)
\(\Rightarrow S_{OAB}=\frac{4\sqrt{3}\cdot4}{2}=8\sqrt{3}\left(dvdt\right)\)
phương trình parabol có dạng y= ax2 + bx + c (P)
P đi qua O(o,o) nên c = 0
P đi qua A(-2,1) nên 1 = 4a -2b (1)
P đi qua B(2,1) nên 1 = 4a +2b (2)
Giải hệ (1),(2) ta có a=1/4
b=0
Vậy y=1/4 x2
nha bn :))