Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
=>ΔADB đồng dạng với ΔHDA
=>AB/AH=DB/AD
=>AB*AD=AH*BD
b: \(BD=\sqrt{6^2+8^2}=10cm\)
AH=6*8/10=4,8cm
c: Xet ΔHDK vuông tại H và ΔHBA vuông tại H có
góc HDK=góc HBA
=>ΔHDK đồng dạng với ΔHBA
=>DK/BA=HD/HB=6^2/8^2=36/64=9/16
Vì trong 1 tam giác cân, đường cao đồng thời là đường trung tuyến, vừa là đường phân giác của tam giác đó.
\(\Rightarrow\) \(\widehat{EAO}\)\(=\widehat{FAO}\)
Xét \(\Delta EAO\) và \(\Delta FAO\) có:
AO là cạnh chung
\(\widehat{AOE}\)\(=\widehat{AO}F\) ( vì AH\(\perp BC\)\(\Rightarrow\) AH\(\perp\)EF)
\(\widehat{EAO}\)\(=\widehat{FAO}\) (cmt)
\(\Rightarrow\Delta EAO=\Delta FAO\left(g.c.g\right)\)
\(\Rightarrow AE=\) AF( cặp cạnh tương ứng)
Vì \(\widehat{AOE}=\widehat{OHB}\) \(=90\)độ
Mà 2 góc này ở vị trí đồng vị nên EF// BC (1)
Vì \(\Delta ABC\) cân tại A=> \(\widehat{B}\) = \(\widehat{C}\) (2)
Từ (1) và (2)=> BEFC là hình thang cân.
đề sai rồi bạn ơi
2 đường chéo của hình thang không thể song song nhau