Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì BA= BD => tam giác BAD cân tại B => góc DBA = góc DAB
b, Trong tam giác vuông ADH có: góc BDA + góc DAH = 90 độ
Mà góc CAB + góc DAH = góc CAB = 90 độ
=> góc BDA + góc DAH = góc CAB + góc DAB
Mà góc DBA = góc DAB ( cmt)
=> góc DAH = góc CAD => AD là tia phân giác của góc HAC
c, Xét tam giác AKD và tam giác AHD, có:
AD chung ; góc DAH = góc DAK ( AD là tia phân giác của góc HAC)
góc AHD = góc AKD ( AH là đường cao ; DK vuông góc AC)
=> tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )
=> AH = AK ( 2 cạnh tương ứng)
d, Ta có : BC + AH = BD + BC + AH = AB + AK ( vì BD = AB ; AH = AK) (1)
Xét tam giác DC vuông tại K có:
KC là cạnh góc vuông
DC là cạnh huyền
=> KC <DC ( quan hệ giữa đường vuông góc và đường xiên) (2)
Từ (1) và (2) => BC + AH > AB+ KC + AC
=> BC + AH > AB+ AC ( Vì AC = KC + AK)
Đánh giá cho mình nhá ! =))
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a)
+) Do tam giác ABC cân tại A nên trung tuyến AH đồng thời là đường caio.
Vậy nên \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
+) Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
b) Gọi O là trung điểm MN. Ta thấy DN và DM là phân giác của hai góc kề bù nên chúng vuông góc với nhau.
Vậy tam giác DMN vuông tại D. Khi đó ta có DO là trung tuyến ứng với cạnh huyền nên DO = MN/2
Vậy DO = OM = OM hay các tam giác DOM và DON cân tại O.
Ta có: \(\widehat{DOM}=180^o-2\widehat{DMO}=180^o-2\left(\widehat{MDB}+\widehat{MBD}\right)\)
\(=180^o-2.\widehat{MDB}-2.\widehat{MBD}=180^o-\widehat{BDC}-\widehat{ABC}\)
\(=180^o-\widehat{BDC}-\widehat{ACB}=\widehat{DBO}\)
Vậy tam giác DBO cân tại D hay DB = DO.
Vậy nên BD = MN/2.
xét tam giác BAI va CBE
be=ab
bc=ia
iab=ebc
=>tam giác BAI=tam giác CBE
Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
hình như thế này mới đúng chứ
D1=B2+C (1)
B2+B1+C=90o (2)
D2= 90o+B1 (3)
=> D2 = B1+B2+B1+C; D1=C+B1
nếu D1-D2=B1+B2=ABC
Nhớ tick cho mình nhé. chúc bạn học tốt.