Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a^{m+1}}{a^{m+2}}\)với \(a=\dfrac{-1}{2}\)
Ta có:
\(\dfrac{a^{m+1}}{a^{m+2}}=\dfrac{a^m.a}{a^m.a^2}=\dfrac{-1}{2}:\left(\dfrac{-1}{2}\right)^2=-2\)
b) \(\dfrac{a^m}{a^{2m+1}}\)với \(a=\dfrac{-1}{4};m=3\)
Ta có:
\(\dfrac{a^m}{a^{2m+1}}=\dfrac{a^3}{a^{2.3}.a}=\dfrac{a^3}{a^6.a}=\dfrac{1}{a^3.a}=\dfrac{1}{\left(-\dfrac{1}{4}\right)^3.\left(-\dfrac{1}{4}\right)}=\dfrac{1}{\left(-\dfrac{1}{4}\right)^4}=256\)
c)\(\dfrac{\left(a+3\right)^3}{\left(a+3\right)^4}\)
Ta có:
\(\dfrac{\left(a+3\right)^3}{\left(a+3\right)^4}=\dfrac{\left(a+3\right)^3}{\left(a+3\right)^3.\left(a+3\right)}=\dfrac{1}{a+3}\)
Chúc bạn học tốt
À, cho mình xin lỗi, ở câu b là \(\dfrac{1}{\left(\dfrac{1}{4}\right)^4}\) nha bạn
1)
a) \(-\frac{9}{34}:\frac{17}{4}\)
\(=-\frac{18}{289}.\)
b) \(1\frac{1}{2}.\frac{1}{24}\)
\(=\frac{3}{2}.\frac{1}{24}\)
\(=\frac{1}{16}.\)
c) \(-\frac{5}{2}:\frac{3}{4}\)
\(=-\frac{10}{3}.\)
d) \(4\frac{1}{5}:\left(-2\frac{4}{5}\right)\)
\(=\frac{21}{5}:\left(-\frac{14}{5}\right)\)
\(=-\frac{3}{2}.\)
Mấy câu sau bạn đăng ríu rít quá khó nhìn lắm.
Chúc bạn học tốt!
2.
a. \(A=\left(a+b-c\right)-\left(2a+b-2c\right)\)
\(=a+b-c-2a-b+2c\)
\(=-a+c\)
Thay a=-1 ; c=1 vào A ta có:
\(A=-\left(-1\right)+1=1+1=2\)
Vậy A = 2 với a=-1 ; c = 1
b. \(B=a-\left[\left(a-3\right)+\left(a+3\right)-\left(a-2\right)\right]\)
\(=a-\left(a-3+a+3-a+2\right)\)
\(=a-a+3-a-3+a-2\)
\(=\left(a-a-a+a\right)+\left(3-3-2\right)\)
\(=-2\)
Vậy B = -2
a: Thay x=-2 và y=-4 vào y=ax+4, ta được:
-2a+4=-4
=>-2a=-8
=>a=4
=>y=4x+4
b: f(-1/2)=4*(-1/2)+4=4-2=2
f(-3)=-12+4=-8
f(5)=4*5+4=24
f(4/3)=4*4/3+4=16/3+4=32/3
f(1/2)=4*1/2+4=2+4=6
f(3/2)=4*3/2+4=6+4=10
Thì mik bổ xung thêm. Tổng các chữ số của A là:
7+2+5+7+6+0+0+0 = 27
ĐS: 27
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
Bài 1:
\(A=2x+2y-y\)
\(A=2x+y\)
Thay x = 2,5 và y = 3/4 vào A
\(A=2.2,5+\dfrac{3}{4}\)
\(A=5+\dfrac{3}{4}\)
\(A=\dfrac{23}{4}\)
\(B=\dfrac{5a}{3}-\dfrac{3}{b}\)
Thay a = 1/3 và b = 0,25 vào B
\(B=\dfrac{5.\dfrac{1}{3}}{3}-\dfrac{3}{0,25}\)
\(B=\dfrac{5}{9}-12\)
\(B=-\dfrac{103}{9}\)
Bài 2:
a) \(\left(2x-\dfrac{1}{2}\right).2+\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right):\dfrac{1}{8}=1\)
\(\Rightarrow4x-1+\dfrac{26}{3}=1\)
\(\Rightarrow4x+\dfrac{23}{3}=1\)
\(\Rightarrow4x=1-\dfrac{23}{3}\)
\(\Rightarrow4x=-\dfrac{20}{3}\)
\(\Rightarrow x=-\dfrac{5}{3}\)
b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)
\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)=0\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
Vì \(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=-66\)
Bài 3:
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{n}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{n-1}{n}\)
\(A=\dfrac{1}{n}\)
Bài 2:
Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :
\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.
Thay $x=1$ và $x=-1$ lần lượt ta có:
\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)
PP 2 xin đợi bạn khác giải quyết :)
Bài 3:
Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)
\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)
\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)
Tìm giá trị biểu thức nha bạn
a, Không rõ đề :v
b, Ta có : \(\frac{\left(a+3\right)^3}{\left(a+3\right)^4}=\frac{1}{a+3}=\frac{1}{3-4}=\frac{1}{-1}=-1\)
c, Hình như đề sai :v