Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả là 1 phần tử trừ C và E có nhiều phần tử
D = { y \(\in\) N / y + 7 = 6 } => y = 1
E = { b \(\in\) N / b : 4 dư 2 , b < 1000} => y \(\in\){2; 6; 10; 14; ...; 998}
D = { y \(\in\) N / y + 7 = 6 } => y \(\in\)tập rỗng
E = { b \(\in\) N / b : 4 dư 2 , b < 1000 } => b \(\in\){2; 6; 10; 14; ...; 998}
Xin lỗi bạn, mình nhầm lẫn một chút
a) \(A=\left\{-6;-5;-4;-3;-2\right\}\)
b) \(B=\left\{-4;-3;-2;-1;0;1;2\right\}\)
c) \(C=\left\{-7;-6;-5;-4;-3;-2-1\right\}\)
d) \(D=\left\{-2;-1;0;1;2;3;4;5;\right\}\)
a, A= (-6;-5;-4;-3;-2)
b,B=(-4;-3;-2;-1;0;1;2)
c, C=(-7;-6;-5;-4;-3;-2;-1)
d,D=(-2;-1;0;1;2;3;4;5)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1:
Ta có: \(2n-1⋮n+1\)
⇔\(2n+2-3⋮n+1\)
⇔\(-3⋮n+1\)
⇔\(n+1\inƯ\left(-3\right)\)
⇔\(n+1\in\left\{1;-1;3;-3\right\}\)
⇔\(n\in\left\{0;-2;2;-4\right\}\)(tm)
Vậy: \(n\in\left\{0;-2;2;-4\right\}\)
Bài 2:
a) Ta có: \(\left(-2\right)\cdot\left(-2\right)\cdot\left(-2\right)\cdot...\cdot\left(-2\right)\)(có 102 số -2)
\(=\left(-2\right)^{102}\)
Vì căn bậc chẵn của số âm là số dương
và 102 là số chẵn
nên \(\left(-2\right)^{102}\) là số dương
⇔\(\left(-2\right)^{102}>0\)
hay \(\left(-2\right)\cdot\left(-2\right)\cdot\left(-2\right)\cdot...\cdot\left(-2\right)\)(có 102 chữ số 2) lớn hơn 0
b) (-1)*(-3)*(-90)*(-56)
Ta có: (-1)*(-3)*(-90)*(-56)
=1*3*90*56>0
hay (-1)*(-3)*(-90)*(-56)>0
c) \(90\cdot\left(-3\right)\cdot25\cdot\left(-4\right)\cdot\left(-7\right)\)
Vì -3;-4;-7 là 3 số âm
nên \(\left(-3\right)\cdot\left(-4\right)\cdot\left(-7\right)< 0\)(1)
Vì 90; 25 là 2 số dương
nên 90*25>0(2)
Ta có: (1)*(-2)=(-3)*(-4)*(-7)*90*25
mà số âm nhân số dương ra số âm
nên (-3)*(-4)*(-7)*90*25<0
d) Ta có: \(\left(-4\right)^{60}\) là số âm có mũ chẵn
nên \(\left(-4\right)^{60}>0\)
e) Ta có: \(\left(-3\right)^0\cdot\left(-7\right)^9=\left(-7\right)^9\)
Ta có: \(\left(-7\right)^9\) là số âm có bậc lẻ
nên \(\left(-7\right)^9< 0\)
hay \(\left(-3\right)^0\cdot\left(-7\right)^9< 0\)
f) Ta có: \(\left|-3\right|\cdot\left|-7\right|\cdot9\cdot4\cdot\left(-5\right)\)=3*7*9*4*(-5)
Vì 3*7*9*4>0
và -5<0
nên 3*7*9*4*(-5)<0
Bài 3:
a) Ta có: \(18⋮x\)
⇔x∈{1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
mà -6≤x≤3
nên x∈{-6;-3;-2;-1;1;2;3}
Vậy: x∈{-6;-3;-2;-1;1;2;3}
b) Ta có: x⋮3
⇔x∈{...;-15;-12;-9;-6;-3;0;3;6;9;...}
mà -12≤x<6
nên x∈{-12;-9;-6;-3;0;3}
Vậy: x∈{-12;-9;-6;-3;0;3}
c) Ta có: 12⋮x
⇔x∈Ư(12)
⇔x∈{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
mà -4<x<1
nên x∈{-3;-2;-1}
Vậy: x∈{-3;-2;-1}
Bài 4:
a) Ta có: \(2x+\left|-9+2\right|=6\)
⇔\(2x+7=6\)
hay 2x=-1
⇔\(x=\frac{-1}{2}\)(ktm)
Vậy: x∈∅
b) Ta có: \(36-\left(8x+6\right)=6\)
⇔8x+6=30
hay 8x=24
⇔x=3(thỏa mãn)
Vậy: x=3
c) Ta có: \(\left|2x-1\right|+9=\left|-13\right|\)
⇔\(\left|2x-1\right|+9=13\)
⇔\(\left|2x-1\right|=4\)
⇔\(\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-3}{2}\end{matrix}\right.\)(loại)
Vậy: x∈∅
d) Ta có: \(9x-3=27-x\)
\(\Leftrightarrow9x-3-27+x=0\)
hay 10x-30=0
⇔10x=30
⇔x=3(thỏa mãn)
Vậy: x=3
e) Ta có: \(\left(2x-8\right)\left(9-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\9-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\3x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)(tm)
Vậy: x∈{3;4}
f) Ta có: \(\left(x-3\right)\left(2y+4\right)=5\)
⇔x-3;2y+4∈Ư(5)
⇔x-3;2y+4∈{1;-1;5;-5}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\2y+4=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\frac{1}{2}\end{matrix}\right.\)(loại)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\2y+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=\frac{-3}{2}\end{matrix}\right.\)(loại)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\2y+4=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-9}{2}\end{matrix}\right.\)(loại)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\2y+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\2y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\frac{-5}{2}\end{matrix}\right.\)(loại)
Vậy: x∈∅; y∈∅