K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

A = \(\frac{4024x\left(2010+4\right)-2}{2011+2012x2010}\)= \(\frac{2024x2010+4024-2}{2011+2012x2010}\)=\(\frac{4024x2010+4022}{2011+2012x2010}\)= 2

câu B hình như sai đề bài . mk moi hoc lop 6 thoi nen cũng ko chắc .

19 tháng 7 2017

A=2.002983591

B= -1.004960108

19 tháng 7 2017

A=2.002983591

B=  -1

29 tháng 7 2017

mình không biết kq =mấy

nhứng mình c/m kq =2 là sai

\(A-2=\dfrac{4024.2014-2}{Khongquantam}-2=\dfrac{4024.2014-2-2.2011-2.2012.2010}{Khongquantam}\)

\(A-2=\dfrac{2\left(2012.2014-2011-2012.2010-1\right)}{Khongquantam}=\dfrac{2\left[2012.\left(2014-2010\right)-2011-1\right]}{Khongquantam}\)

\(A-2=\dfrac{2\left[4.2012-2011-1\right]}{Khongquantam}=\dfrac{2\left[3.2011+3\right]}{Khongquantam}\)

\(A-2=\dfrac{2\left[3.\left(2011+1\right)\right]}{Khongquantam}=\dfrac{2.3.2012}{Khongquantam}\ne0\)\(A-2\ne0\)

\(\Rightarrow A\ne2\Rightarrow kq=2=sai\)

2 tháng 8 2017

nhưng rất tiếc mình ghi sai đề ha

18 tháng 2 2017

từng bước bao gồm cả lập luân luôn

a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)

\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)

nếu ta trừ một vào từng số hạng được tử số giống nhau

\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)

\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế

\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)

Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)

\(x=\frac{2012}{503}\)

18 tháng 2 2017

mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy

18 tháng 4 2020

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\cdot503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}\)

\(\Leftrightarrow503x=\frac{1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2014}{2}-1+\frac{2015}{3}-1+...+\frac{4024}{2012}-1+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=\frac{2012}{503}\)

7 tháng 1 2018

Phương trình đã cho tương đương với :

\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)

\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

Tìm x theo như toán lớp 6 nha

\(x-2013=0\)

\(\Leftrightarrow\)\(x=2013\)

7 tháng 1 2018

ta có pt 

<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)

<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)

^_^

20 tháng 1 2019

\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)

\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)

\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)

\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)