Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) G = \(\frac{636363.37-373737.63}{1+2+3+...+2017}\)
G = \(\frac{63.10101.37-37.10101.63}{1+2+3+...+2017}\)
G = \(\frac{0}{1+2+3+...+2017}\)
=> G = 0
Vậy G = 0
a) \(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{48.49.50}\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(\Rightarrow E=\frac{1}{2}.\frac{612}{1225}\)
\(\Rightarrow E=\frac{306}{1225}\)
Vậy...
b) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\frac{2.1}{1}=2\)
d) Bạn xem lại đề nhé
=.8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))/((5*17*37+5*7*37+5*7*17)/(7*17*37))*x=16/5
=>8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))*((7*17*37)/(5*17*37+5*7*37+5*7*17))*x=16/5
=>8/5+(2(17*37+7*37+7*17))/(5(17*37+7*37+7*17))*x=16/5
=>8/5+(2/5)*x=16/5
=>(2/5)*x=16/5-8/5
=>(2/5)*x=8/5
=>x=(8/5)/(2/5)
=>x=4
Vậy x=4
B=\(\frac{12+\frac{4}{3}-\frac{12}{37}-\frac{12}{53}}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
=\(\frac{12+\frac{12}{9}-\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{9}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
=\(\frac{12\left(\frac{1}{1}+\frac{1}{9}-\frac{1}{37}-\frac{1}{53}\right)}{3\left(\frac{1}{1}+\frac{1}{9}-\frac{1}{37}-\frac{1}{53}\right)}:\frac{4\left(\frac{1}{1}+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(\frac{1}{1}+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
=\(4:\frac{4}{5}\)
=\(5\)
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
tui ko viet dc kiểu p/số nên viết cái gạch ngang giữa kết quả nha
\(A=\frac{8+\frac{8}{17}+\frac{8}{37}}{4+\frac{4}{17}+\frac{4}{37}}\)
\(A=\frac{8\cdot\left(1+\frac{1}{17}+\frac{1}{37}\right)}{4\cdot\left(1+\frac{1}{17}+\frac{1}{37}\right)}\)
\(A=\frac{8}{4}\)
\(A=2\)