Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Ta có: \(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{99}\left(1+4\right)\)
\(A=\left(1+4\right)\left(4+4^3+4^5+...+4^{99}\right)\)
\(A=5\left(4+4^3+4^5+...+4^{99}\right)⋮5\)
\(\Rightarrow A⋮5\)(đpcm)
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
a = 2 + 22 +23+........................+ 2100 chia hết cho 62
a = [ 2 + 22 +23+.24+25 ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ]
a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ]
a= 62 . [ 210 + 215 + 220 +......................+ 2100 ]
Mà 62 chia hết cho 62 => 62 . [ 210 + 215 + 220 +......................+ 2100 ] hay a chia hết cho 62
a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)
= 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)
= 62+2^5.62+....+2^95.62
= 62.(1+2^5+....+2^95) chia hết cho 62
=> ĐPCM
k mk nha
Ta có:
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = (4 + 42) + (43 + 44) + ... + (499 + 4100)
A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)
A = 4.5 + 43.5 + ... + 499.5
A = 5.(4 + 43 + ... + 499)
Vậy A chia hết cho 5
mình biết làm nhưng trả lời dài lắm
\(A=5+5^2+5^3+...+5^{99}+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)\)
Vì \(A=6.\left(5+5^3+...+5^{99}\right)\)lên A chia hết cho 6.