Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x+7⋮x+2\)
=>\(x+2+5⋮x+2\)
=>\(5⋮x+2\)
=>\(x+2\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-1;-3;3;-7\right\}\)
b: \(2x+5⋮x+1\)
=>\(2x+2+3⋮x+1\)
=>\(3⋮x+1\)
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
c: \(3x-2⋮x+3\)
=>\(3x+9-11⋮x+3\)
=>\(-11⋮x+3\)
=>\(x+3\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{-2;-4;8;-14\right\}\)
d: \(12x+1⋮3x+2\)
=>\(12x+8-7⋮3x+2\)
=>\(-7⋮3x+2\)
=>\(3x+2\in\left\{1;-1;7;-7\right\}\)
=>\(3x\in\left\{-1;-3;5;-9\right\}\)
=>\(x\in\left\{-\dfrac{1}{3};-1;\dfrac{5}{3};-3\right\}\)
e: \(x^2+3x+5⋮x+3\)
=>\(x\left(x+3\right)+5⋮x+3\)
=>\(5⋮x+3\)
=>\(x+3\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-2;-4;2;-8\right\}\)
f: \(x^2-2x+3⋮x+2\)
=>\(x^2+2x-4x-8+11⋮x+2\)
=>\(11⋮x+2\)
=>\(x+2\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{-1;-3;9;-13\right\}\)
a)-5 ( 3x - 7 ) - ( -15x +3 ) - ( 12-x )= -4
=>-15x+35+15x-3-12+x=-4
=>(-15x+15x)+(35-3-12)+x=-4
=>0+20+x=-4
=>20+x=-4
=>x=-4-20
=>x=-24
b)-3 ( 4x -2 ) - ( -12x +8 ) - (-x)=0
=>-12x+6+12x-8+x=0
=>(-12x+12x)+(6-8)+x=0
=>0+(-2)+x=0
=>(-2)+x=0
=>x=0-(-2)
=>x=2
a) \(\left(x-5\right)\left(2x-3^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\2x=9\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{9}{2}\end{matrix}\right.\)
b) \(2\left(3x-15\right)\left(5-x\right)=0\)
\(\Rightarrow6\left(x-5\right)\left(5-x\right)=0\Rightarrow x=5\)
(x - 5)(2x - 32) = 0
=> \(\left[\begin{array}{} x - 5 = 0\\ 2x - 3^{2} = 0 \end{array} \right.\)=> \(\left[\begin{array}{} x = 0 - 5 = -5\\ 2x = 0 - 3^{2} = 0 - 9 = -9 => x = \dfrac{9}{2} \end{array} \right.\)
a: ĐKXĐ: \(x\notin\left\{4\right\}\)
x2-3x=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thay x=0 vào A, ta được:
\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Thay x=3 vào A, ta được:
\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)
b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
c: Đặt P=A:B
ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)
P=A:B
\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)
\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)
Để P là số nguyên thì \(2x⋮x-4\)
=>\(2x-8+8⋮x-4\)
=>\(8⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)
Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t
Ta có x² - 3x = 0 suy ra x x (x - 3) = 0
x = 0; x = 3
Với x = 0 suy ra A = 5/4 v
Với x = 3 suy ra A = 2
Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)
Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8
x - 4 = 8 suy ra x = 4
x - 4 = 4 suy ra 2x = 0 loại
x - 4 = -1 suy ra x = 3 thỏa mãn
x - 4 = 1 suy ra x = 5 loại
x - 4 = 4 - 2x = 8 thỏa mãn
x - 4 = 8 suy ra x = 12 thỏa mãn
a, 3x2 +12x=0
3x(x+4)=0
=> 3x=0 hoặc x+4=0
=> x=0 hoặc x= -4
Vậy x=0; x= -4
b, 4x3 = 4x
4x3- 4x=0
4x(x2- 1) =0
4x(x-1)(x+1)=0
=> 4x=0 hoặc x-1=0 hoặc x+1=0
=> x=0 hoặc x=1 hoặc x=-1
Vậy x=0; x=1;x=-1
c, ( x-1)(x+1)+2=0
x2- 1+2=0
x2+1=0
x2 = -1
=> x vô nghiệm