Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
a) Phá trị tuyệt đối ra thành 2 trường hợp:
TH1: |3x - 2| - x = 7
=> 3x - 2 - x =7
=> 2x = 9
=> x = 4,5
TH2: |3x - 2| - x = 7
=> 2 - 3x - x = 7
=> 2 - 4x = 7
=> -5 = 4x
=> x = -1,25
Vậy x = -1,25 hoặc x = 4,5
b) Ta phá trị tuyệt đối:
TH1: |2x - 3| > 5
=> 2x - 3 > 5
=> 2x > 8
=> x > 4 (1)
TH2: |2x - 3| > 5
=> 3 - 2x > 5
=> 2x > -2
=> x > -1 (2)
Từ (1) và (2) ta suy ra x > 4
HAI Ý CÒN LẠI BẠN CŨNG PHÁ TRỊ TUYỆT ĐỐI RA THÀNH 2 TRƯỜNG HỢP NHA !!!
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
a) |3x - 5| = 3x - 5 => 3x - 5 > 0 => 3x > 5 => x > 5/3
b) |7 - x| = x - 7 => 7 - x < 0 => - x < - 7 => x > 7
c) |2x - 3| = 3 - 2x => 2x - 3 < 0 => 2x < 3 => x < 3/2
\(\left|2x-3\right|>5\\ \Rightarrow-5< 2x-3< 5\\ \Rightarrow-2< 2x< 8\\ \Rightarrow-1< x< 4\)
b. TT
c .
\(\left|3x-5\right|+\left|2x+3\right|=7\)
TH1 : x<-3/2
\(\Rightarrow-\left(3x-5\right)-\left(2x+3\right)=7\\ \Rightarrow-5x+2=7\\ \Rightarrow x=-1\left(loai\right)\)
TH2 : -3/2<=x<=5/3
\(\Rightarrow-\left(3x-5\right)+\left(2x+3\right)=7\\ \Rightarrow-x+8=7\\ \Rightarrow x=1\left(TM\right)\)
TH3 : x>5/3
\(\Rightarrow3x-5+2x+3=7\\ \Rightarrow5x-2=7\\ \Rightarrow x=\dfrac{9}{5}\)