K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2022

b) +) |2x-3|=2x-3 khi 2x-3 ≥ 0 ⇔ x ≥ \(\dfrac{3}{2}\)
Khi đó PT b trở thành :
    2x-3-x=5
⇔2x-x=5+3
⇔x=8 (tm)
    +) |2x-3|=-2x+3 khi 2x-3 < 0 ⇔ x < \(\dfrac{3}{2}\) 
 Khi đó PT b trở thành :
     -2x+3-x=5
⇔-2x-x=5-3
⇔-3x=2
⇔x=\(-\dfrac{2}{3}\) (tm) 
  vậy tập nghiệm  của PT là S={8;​​​\(-\dfrac{2}{3}\) }​

7 tháng 5 2022

a) kiểm tra xem có sai đề không bạn nhé

b) |2x-3|-x=5 

    |2x-3|   =5+x

TH1: 2x-3 > 0 => x>3/2

    => 2x-3=5+x

    => x= 8 <t/m>

TH2 : 2x-3<0 => x<3/2

   => -2x+3=5+x

   => x       =\(-\dfrac{3}{2}\)

Bài 1:

a) 5(x-3)-4=2(x-1)

\(\Leftrightarrow5x-15-4=2x-2\)

\(\Leftrightarrow5x-19-2x+2=0\)

\(\Leftrightarrow3x-17=0\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)

Vậy: \(x=\frac{17}{3}\)

b) 5-(6-x)=4(3-2x)

\(\Leftrightarrow5-6+x=12-8x\)

\(\Leftrightarrow-1+x-12+8x=0\)

\(\Leftrightarrow-13+9x=0\)

\(\Leftrightarrow9x=13\)

\(\Leftrightarrow x=\frac{13}{9}\)

Vậy: \(x=\frac{13}{9}\)

c) (3x+5)(2x+1)=(6x-2)(x-3)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)

\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)

\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy:x=1

Bài 2:

a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)

\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)

\(\Leftrightarrow4x-10x-15x-3x+60=0\)

\(\Leftrightarrow-24x+60=0\)

\(\Leftrightarrow-24x=-60\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy: \(x=\frac{5}{2}\)

b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)

\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)

\(\Leftrightarrow-3x=0\)

\(\Leftrightarrow x=0\)

Vậy: x=0

c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)

\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)

\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)

\(\Leftrightarrow15x-15-2x-2-10x+65=0\)

\(\Leftrightarrow3x+48=0\)

\(\Leftrightarrow3x=-48\)

\(\Leftrightarrow x=-16\)

Vậy: x=-16

d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)

\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)

\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)

\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)

\(\Leftrightarrow-13x+143=0\)

\(\Leftrightarrow-13x=-143\)

\(\Leftrightarrow x=11\)

Vậy: x=11

e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)

\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)

\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)

\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)

\(\Leftrightarrow45x-18-24-28x+60x-420=0\)

\(\Leftrightarrow77x-462=0\)

\(\Leftrightarrow77x=462\)

\(\Leftrightarrow x=6\)

Vậy:x=6

Bài 3:

a) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)

b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)

c) \(\left(2x+1\right)\left(x^2+2\right)=0\)

Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)

Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta lại có \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)

Ta có: \(4\ne0\)(4)

Từ (3) và (4) suy ra

2x-1=0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

Bài 4:

a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)

\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)

\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow x^2+2x+1-9=0\)

\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-4\right\}\)

b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)

\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)

\(\Leftrightarrow-8x^2+40x-32=0\)

\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)

\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)

\(-8\ne0\)

nên \(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{1;4\right\}\)

e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+23x+35x+115=0\)

\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)

\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)

Bài 5:

a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)

b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)

\(\Leftrightarrow3x^2-3=0\)

\(\Leftrightarrow3\left(x^2-1\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-1\right\}\)

c) \(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)

Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)

Từ (5) và (6) suy ra

\(\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy: x=-1

18 tháng 2 2020

ko khó đâu, chủ yếu nhát làm

21 tháng 6 2021

a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18

= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18

= 2(1 - 2x)  - 18 = 0

= 2 - 4x - 18 = 0

= -16 - 4x = 0

= -4x = 16

= x = \(\dfrac{16}{-4}=-4\)

b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0

= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0

= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0

= 12x - 5 = 0

= 12x = 5

= x = \(\dfrac{5}{12}\)

c) (x - 5)2 - x(x - 4) = 9

= x2 - 10x + 25 - x2 + 4x - 9 = 0

= -6x + 16 = 0

= -6x = -16

= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)

d) (x - 5)2 + (x - 4)(1 - x)

= x2 - 10x + 25 + 5x - x2 - 4 = 0

= -5x + 21 = 0

= -5x = -21

= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\) 

 Chúc bạn học tốt

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

3 tháng 10 2021

a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)

\(=4x\left(a-b\right)-6xy\left(a-b\right)\)

\(=\left(4x-6xy\right)\left(a-b\right)\)

\(=2x\left(2-3y\right)\left(a-b\right)\)

3 tháng 10 2021

b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(3-2x+5\right)\left(2x+1\right)\)

\(=\left(8-2x\right)\left(2x+1\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)

\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)

\(\Leftrightarrow10x-2=0\)

hay 10x=2

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy: \(x=\frac{1}{5}\)

b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

hay 2x=6

\(\Leftrightarrow x=3\)

Vậy: x=3

c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

hay \(x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

a) $(x+5)(2x-1)=(2x-3)(x+1)$

$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$

$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$

b)

$(x+1)(x+9)=(x+3)(x+5)$

$\Leftrightarrow x^2+10x+9=x^2+8x+15$

$\Leftrightarrow 2x=6\Rightarrow x=3$

c)

$(3x+5)(2x+1)=(6x-2)(x-3)$

$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$

$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$

29 tháng 3 2018

Violympic toán 8

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

10 tháng 8 2020

mấy bài này ko khó, mong bạn tự làm được :)

10 tháng 8 2020

a) \(A=\left(5-x\right)\left(x+5\right)-2\left(x-1\right)\left(x-3\right)-3\left(x-2\right)^2\)

\(=\left(5-x\right)\left(5+x\right)-\left(2x-2\right)\left(x-3\right)-3\left(x^2-2.2x+2^2\right)\)

\(=\left(5^2-x^2\right)-\left[2x\left(x-3\right)-2\left(x-3\right)\right]-3\left(x^2-4x+4\right)\)

\(=25-x^2-\left[\left(2x^2-6x\right)-\left(2x-6\right)\right]-3x^2+12x-12\)

\(=25-x^2-\left(2x^2-6x-2x+6\right)-3x^2+12x-12\)

\(=25-x^2-2x^2+6x+2x-6-3x^2+12x-12\)

\(=7+20x-6x^2\)

b/ \(B=\left(3-2x\right)\left(x-2\right)+\left(2x-5\right)^2-\left(x-4\right)\)

\(=3\left(x-2\right)-2x\left(x-2\right)+\left[\left(2x\right)^2-2.2x.5+5^2\right]-x+4\)

\(=3x-6-2x^2+4x+4x^2-20x+25-x+4\)

\(=23-14x+2x^2\)

c/ \(C=\left(x-4\right)\left(x-2\right)-3\left(x-2\right)\left(3-2x\right)-\left(2x+1\right)^2\)

\(=x\left(x-2\right)-4\left(x-2\right)-\left(3x-6\right)\left(3-2x\right)-\left[\left(2x\right)^2+2.2x.1+1^2\right]\)

\(=x^2-2x-4x+8-\left[3x\left(3-2x\right)-6\left(3-2x\right)\right]-4x^2-4x-1\)

\(=x^2-2x-4x+8-\left(9x-6x^2-18+12x\right)-4x^2-4x-1\)

\(=x^2-2x-4x+8-9x+6x^2+18-12x-4x^2-4x-1\)

\(=25-31x+3x^2\)

d/ \(D=2\left(x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(2x+1\right)^2\)

\(=2.\left(x^2-2x+1\right)-\left(3x-3\right)\left(x+2\right)-\left[\left(2x\right)^2+2.2x+1\right]\)

\(=2x^2-4x+2-\left[3x\left(x+2\right)-3\left(x+2\right)\right]-\left(4x^2+4x+1\right)\)

\(=2x^2-4x+2-\left(3x^2+6x-3x-6\right)-\left(4x^2+4x+1\right)\)

\(=2x^2-4x+2-3x^2-6x+3x+6-4x^2-4x-1\)

\(=7-11x-5x^2\)

P/s: Ko chắc ạ!

12 tháng 8 2019

lê thị hương giang cho hỏi bạn học lớp mấy ?