Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{152.155}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{152}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\frac{153}{310}\)
\(A=\frac{51}{310}\)
3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
3A=\(\frac{1}{2}-\frac{1}{98}\)
3A=\(\frac{98}{196}-\frac{2}{196}\)=\(\frac{96}{196}=\frac{24}{49}\)
A=\(\frac{24}{49}:3=\frac{24}{49}.\frac{1}{3}=\frac{8}{49}\)
Vậy A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(\Rightarrow3A=3\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\right)\)
\(\Rightarrow3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{24}{49}\)
\(\Rightarrow A=\frac{24}{49}:3\)
\(\Rightarrow A=\frac{8}{49}\)
Vậy \(A=\frac{8}{49}\)
Tham khảo tại link này nhé : https://olm.vn/hoi-dap/detail/79256477545.html
hoặc vô câu hỏi tương tự cx có đó
\(A=\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{95.98.}\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{24}{49}\)
\(A=\frac{8}{49}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
\(=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=3.\frac{24}{49}\)
\(=\frac{72}{49}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{95}-\frac{1}{98}\)
\(=\frac{1}{2}-\frac{1}{98}\)tự làm tiếp
Áp dụng ct : 1/n.(n+1) = 1/n - 1/n+1
Ta có : A = 1/2.5 + 1/5.8 + ...+1/95.98
A = 1/2 - 1/5 + 1/5 - 1/8 +...+ 1/95 - 1/98
A = 1/2 - 1/98
A = 24/49
k mk nha bn
= 1/3 . (1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98)
= 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + 1/11 - ... + 1/92 - 1/95)
= 1/3 . (1/2 - 1/95)
= 1/3 . 93/190
= 31/190
tớ chắc nha nguten duc huy
tham khảo ở đây nha
https://olm.vn/hoi-dap/detail/222956295982.html
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{150}-\dfrac{1}{153}\right)\)
\(=\dfrac{1}{3}.\dfrac{151}{306}=\dfrac{151}{918}\)