Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n
3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n
3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)
A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
b) Đặt B = 12 + 22 + ..... + n2
B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]
B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)
B = A - \(\frac{n\left(n+1\right)}{2}\)
1/A = 1 + 2 + 3 + 4 +.......+ n
Hay A = n + ... + 4 + 3 + 2 + 1 (Viết ngược lại )
=> A + A = (1 + n) + ... + (n + 1) Có n cặp
=> 2.A = (1 + n).n
=> A = (1 + n).n/2 => Đpcm
2/ B=1.2+2.3+3.4.....+(n-1).n
ta có
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ (n-1).n . ((n+1) - (n-2))
3.B=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)(n+1) n
3A=n.(n-1).(n+1)
A=1/3.n.(n-1).(n+1)
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
a,
Có: n/n+1 = n+1-1/n+1 = 1-(1/n+1)
n+2/n+3 = n+3-1/n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> 1-(1/n+1) < 1-(1/n+3) hay n/n+1 < n+2/n+3
b,
giả sử n/n+3 < n-1/n+4
<=> n(n+4) < (n+3)(n-1)
<=> n^2 + 4n < n^2 + 2n - 3
<=> 2n < -3 (sai)
vậy n/n+3 > n-1/n+4
c) \(\frac{n}{2n+1}\)= \(\frac{3n}{6n+3}\)< \(\frac{3n+1}{6n+3}\)