K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2011.2013

A = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2011.2013)

A = 1/2.(1 - 1/3  + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2011 - 1/2013)

A = 1/2.(1 - 1/2013)

A = 1/2.2012/2013

A = 1006/2013

11 tháng 5 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2011}-\frac{1}{2011}\right)-\frac{1}{2013}\)

\(2A=1-\frac{1}{2013}\)

\(2A=\frac{2012}{2013}\)

\(A=\frac{2012}{2013}:2\)

\(A=\frac{1006}{2013}\)

~ Hok tốt ~

28 tháng 4 2019

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

28 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

28 tháng 4 2019

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(\Rightarrow2S=1-\frac{1}{2013}\)

\(\Rightarrow2S=\frac{2012}{2013}\)

\(\Rightarrow S=\frac{2012}{2013}\div2\)

\(\Rightarrow S=\frac{1006}{2013}\)

28 tháng 4 2019

\(2S=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2011\cdot2013}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2S=1-\frac{1}{2013}\)

\(2S=\frac{2012}{2013}\)

\(S=\frac{2012}{2013}\div2=\frac{1006}{2013}\)

                                #Louis

26 tháng 4 2017

\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{2011.2013}\)

= 1+\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{5}\)-\(\frac{1}{5}\)+\(\frac{1}{7}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)+...+\(\frac{1}{2011}\)+\(\frac{1}{2013}\)

=1+       0          +        0        +        0         +...+        0          +         \(\frac{1}{2013}\)

=1+\(\frac{1}{2013}\)

=\(\frac{2014}{2013}\)

k dùm nha

26 tháng 4 2017

\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{2011\cdot2013}\)

\(=2\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2011\cdot2013}\right)\)

\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(=2\cdot\left(1-\frac{1}{2013}\right)\)

\(=2\cdot\frac{2012}{2013}\)

\(=\frac{4024}{2013}\)

4 tháng 5 2017

đề bài sải rồi

4 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2011.2013}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2011.2013}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2013}\right)\)

\(=\dfrac{1}{2}.\dfrac{2012}{2013}\)

\(=\dfrac{1006}{2013}\)

31 tháng 1 2016

Chà! Khó quá nhỉ!

 

24 tháng 6 2020

Gọi  \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(\Rightarrow2A=1-\frac{1}{2013}\)

\(\Rightarrow2A=\frac{2012}{2013}\)

\(\Rightarrow A=\frac{1006}{2013}\)

3 tháng 3 2022

Mik nghĩ đề phải là cộng chứ

3 tháng 3 2022

Cô ghi là trừ 

3 tháng 3 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\).

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(2A=\frac{1}{1}-\frac{1}{201}\)

\(2A=\frac{201-1}{201}\)

\(2A=\frac{200}{201}\)

\(A=\frac{200}{201}:2\)

\(A=\frac{200}{402}\)

3 tháng 3 2017

Đáp số là 100/201

12 tháng 5 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2013.2015}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)

Vậy A=1007/2015

12 tháng 5 2016

\(2A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(2A=1-\frac{1}{2015}\)

\(A=\frac{2014}{2015}:2\)

\(A=\frac{1007}{2015}\)