K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

Giải:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{x+1}\)

\(\Leftrightarrow A=\dfrac{x}{x+1}\)

Vậy ...

20 tháng 6 2018

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\\ A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\\ A=1-\dfrac{1}{x+1}\\ A=\dfrac{x}{x+1}\\ \)

Vậy A=\(\dfrac{x}{x+1}\)

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

21 tháng 12 2016

ai lm xong đầu tiên tui k cho

29 tháng 8 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100

A=1/1-1/100

A=100/100-1/100

A=99/100

Mk ko chép đề bài

29 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A==\frac{99}{100}\)

Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)

\(=\dfrac{2020}{2021}\)

mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)

nên A<1

31 tháng 1 2021

làm răng mà gõ đc kí hiệu toán học vậy bạn

 

30 tháng 9 2023
Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai: 

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó: 

Gọi a1 = 1.2  → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4  ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được: 

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2) 

-> A = n.(n+1) .( n+2) / 3

 

 
30 tháng 9 2023

Khó hỉu v 🫤

E ko hỉu 

18 tháng 3 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vậy A=49/50

Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

28 tháng 12 2016

dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1

áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20

9 tháng 5 2022

999/1000(hình như v)

9 tháng 5 2022

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

20 tháng 6 2017

A= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>A

20 tháng 6 2017

ta có : A = 1.2 + 2.3 + 3.4 + ...... + n(n + 1) 

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + n(n + 1)(n + 2)

=> 3A = n(n + 1)(n + 2)

=> A = n(n + 1)(n + 2)/3