Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2.3+2.3.4+....+99.100.101
4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-3.4.5.2+....+98.99.100.101-98.99.100.97
4A=98.99.100.101
4A=97990200
A=97990200/4
A=24497550
B=1.2+3.4+5.6+7.8+8.9+...+999.1000
3B=1.2.3+2.3.(4-1)+3.4(5-2)+....+998.999(1001-998)
3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+998.999.1001-998.999.998
3B=999.1000.1001
3B=999999000
B=999999000/3
B=333333000
C=1+4+9+16+25+36+.....+10000
C=1^2+2^2+3^2+4^2+5^2+6^2+....+100^2
C=(1^2+3^2+5^2+.....+99^2)+(2^2+4^2+6^2+....+100^2)
C=99.100.101/6 + 100.101.102/6
C=166650 +171700
C=338350
Còn câu d bạn dựa vào câu c là làm được ngay bây h mk mỏi tay rùi ko muốn đánh nữa khi nào rảnh mk gửi công thức cho nha bây h mk bận rùi.
chúc bn học tốt
A=1.2.3+2.3.4+....+99.100.101
4.A=1.2.3.(4-0)+2.3.4.(5-1)+...+99.100.101.(102-98)
4.A=1.2.3.1-0.1.2.3+2.3.4.5-1.2.3.4+....+99.100.101.102-98.99.100.101
4.A=99.100.101.102
A=\(\frac{99.100.101.102}{4}\)
B=1.2+2.3+3.4+...+999.1000
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+999.1000.(1001-998)
3.B=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+999.1000.1001-998.999.1000
3.B=999.1000.1001
=>B=\(\frac{999.1000.1001}{3}\)
C và D dễ lắm bạn tự làm nhé
Khi Nhân 99/ 100 với một số ta được kết quả bằng 100 .
Vậy phép nhân đó là:.......….…
Giảinhanh giúp mình với
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)
Tổng: \(\frac{99+1}{2}\cdot99=4950\)
b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)
Tổng: \(\frac{100+2}{2}\cdot50=2550\)
c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)
\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3\cdot S=99\cdot100\cdot101\)
Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)
G = 1.2 + 1 + 2.3 + 1 + 3.4 + 1 + ... + 99.100 + 1
= 1.2 + 2.3 + 3.4 + ... + 99.100 + 99
⇒ 3G = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 99.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 + 297
= 99.100.101 + 297
= 1000197
⇒ G = 1000197 : 3
= 333399