Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vế trái = \(\left(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{500}\right)\)
= \(\frac{1}{501}+\frac{1}{502}+...+\frac{1}{1000}\)= Vế phải
=> đpcm
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
\(A=\dfrac{1000-\left(1+\dfrac{1}{2}+...+\dfrac{1}{999}+\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{1000-1-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{99-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{999}\right)+\left(1-\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=1\)
1-1/2 là 1+1/2 nha.
Bấm nhầm