Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A-A=(2+22+23+24+....+22009+22010)-(1+2+22+23+24+....+22009)=22010-1 => A+1=22010
=> (A+1).52010=22010.52010=102010=(101005)2
Vậy (A+1).52010 là số chính phương
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
Sửa đề: A + 2 = 2x-1
\(A=2+2^2+2^3+2^4+\dots+2^{10}\\2A=2^2+2^3+2^4+2^5+\dots+2^{11}\\2A-A=(2^2+2^3+2^4+2^5+\dots+2^{11})-(2+2^2+2^3+2^4+\dots+2^{10})\\A=2^{11}-2\\\Rightarrow A+2=2^{11}\)
Mà: \(A+2=2^{x-1}\)
\(\Rightarrow2^{x-1}=2^{11}\)
\(\Rightarrow x-1=11\)
\(\Rightarrow x=11+1=12\)
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
ta thấy : 1/21>1/33;...1/30>1/33
Vậy 1/21+..+1/30>1/33+...+1/33(10 lần 1/33)
1/3=11/33
mà 1/33+..+1/33(10 lần 1/33) =10/33
Suy ra S>1/33+..+1/33(10 lần 1/33)>1/3
Vậy S>1/3
nhớ k nha bạn
Có : A = 111...100...0 ( n chữ số 1 và n chữ số 0 ) + 111...1 ( n chữ số 1 ) + 222....2 ( n chữ số 2 )
Đặt 111....1 ( n chữ số 1 ) = a ( a thuộc N )
=> A = a.10^n+a-2a = a.10^n-a = a.(9a+1)-a = 9a^2+a-a = 9a^2 = (3a)^2 là 1 số chính phương
=> ĐPCM