Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tồn tại 1 giá trị của x thỏa mãn đề bài thì: m = 2x + 1 phải thỏa mãn với x = 1
Thay x = 1 vào ta được: m = 2.1 + 1 = 3
Vậy m = 3 thỏa mãn đầu bài.
a) \(\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right)\sqrt{4-2\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}=\frac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{\left(2+\sqrt{3}\right)\left(4-2\sqrt{3}\right)}{3-1}\)
\(=\frac{2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2}=4-3=1\)
c) \(\sqrt{5}\left(\sqrt{6}+1\right):\frac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}-\sqrt{2}}}=\sqrt{5}\left(\sqrt{6}+1\right):\sqrt{\frac{\left(2\sqrt{3}+\sqrt{2}\right)^2}{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)}}\)
\(=\sqrt{5}\left(\sqrt{6}+1\right):\frac{2\sqrt{3}+\sqrt{2}}{\sqrt{12-2}}=\sqrt{5}\left(\sqrt{6}+1\right)\cdot\frac{\sqrt{10}}{\sqrt{2}\left(\sqrt{6}+1\right)}=\frac{\sqrt{5}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=5\)
e) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3}+1}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}+1}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}=\frac{2\sqrt{2}}{\sqrt{3}}=\frac{2\sqrt{6}}{3}\)
\(1:x< 0\left(B\right)\)
\(2:\left(D\right)\)
\(3:x< 2021\left(C\right)\)
\(4:x\ge15\left(D\right)\)
\(5:\)để pt có nghĩa thì 2x-5>0
\(2x>5< =>x>\frac{5}{2}\)
chọn (C)
\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)
\(\sqrt{5}-\sqrt{5}+2=2\)
chọn (B)
\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)
\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)
\(\frac{2}{x+y}\)
chọn (B)
\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)
\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(\sqrt{3}^2-1^2=3-1=2\)
chọn (D)
\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(M=\sqrt{3}-1+\sqrt{3}-1\)
\(M=2\sqrt{3}-2\)
chọn (A)
\(10:\sqrt{4+\sqrt{x^2-1}}=2\)
\(4+\sqrt{x^2-1}=2^2=4\)
\(\sqrt{x^2-1}=0\)
\(x^2-1=0< =>x=1\)
chọn (A)
Bài 1 : a, Theo BĐT Cauchy Schwarz dạng Engel
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu ''='' xảy ra khi \(a=b=c\)
b, \(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)(1)
Theo BĐT Cauchy Schwarz dạng Engel \(\left(1\right)\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
Theo BĐT phụ \(a^2+b^2+c^2\ge ab+bc+ca\)( bạn nhân 2 vào 2 vế rồi tự cm nhé )
\(=\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Dấu ''='' xảy ra khi a=b=c
chủ yếu là xài bđt Cauchy-Schwarz dạng Engel nhé
1a. Áp dụng bđt Cauchy-Schwarz dạng Engel :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> đpcm . Dấu "=" xảy ra <=> a=b=c > 0
a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có
\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
Lời giải:
Gọi vận tốc ca nô là x(km/h), x>3. Vận tốc ca nô xuôi dòng là x+3 (km/h)
Thời gian ca nô xuôi dòng từ A đến B là 40x+3 (giờ)
Vận tốc ca nô ngược dòng là x−3 (km/h)
Quãng đường ca nô ngược dòng từ B đến địa điểm gặp bè là : 40−8=32 km
Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: 32x−3 (giờ)
Ta có phương trình: 40x+3+32x−3=83⇔5x+3+4x−3=13 ⇔15(x−3)+12(x+3)=x2−9
⇔x2=27x⇔[x=27x=0
So sánh với điều kiện thì chỉ có nghiệm x=27 thỏa mãn, suy ra vận tốc của ca nô là 27km/h
9 chắc thế