Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x+1) ^ 2 = 4^2 : 5^ 2
( 5x+1) ^2 = (4:5) ^2
=> (5x+1) = ( 4 : 5) = 0.8
5x = 0.8 - 1
x = 0.7 : 5
x = 0,14
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
a) \(\left|-\frac{2}{11}+\frac{3}{22}x\right|-\frac{1}{2}=\frac{5}{7}\)
=> \(\left|-\frac{2}{11}+\frac{3}{22}x\right|=\frac{17}{14}\)
=> \(\orbr{\begin{cases}-\frac{2}{11}+\frac{3}{22}x=\frac{17}{14}\\-\frac{2}{11}+\frac{3}{22}x=-\frac{17}{14}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{215}{21}\\x=-\frac{53}{7}\end{cases}}\)
b) \(-\frac{7}{8}x-5\frac{3}{4}=3\)
=> \(-\frac{7}{8}x-\frac{23}{4}=3\)
=> \(-\frac{7}{8}x=3+\frac{23}{4}=\frac{35}{4}\)
=> \(x=\frac{35}{4}:\left(-\frac{7}{8}\right)=\frac{35}{4}\cdot\left(-\frac{8}{7}\right)=-10\)
c) \(2x+\left(-\frac{2}{7}\right)-7=-11\)
=> \(2x-\frac{2}{7}-7=-11\)
=> \(2x=-11+7+\frac{2}{7}=-\frac{26}{7}\)
=> \(x=\left(-\frac{26}{7}\right):2=-\frac{13}{7}\)
d) \(\frac{3}{7}+x:\frac{14}{15}=\frac{1}{2}\)
=> \(x:\frac{14}{15}=\frac{1}{2}-\frac{3}{7}=\frac{1}{14}\)
=> \(x=\frac{1}{14}\cdot\frac{14}{15}=\frac{1}{15}\)
\(\Leftrightarrow\dfrac{7^x.7^2+7^x.7+7^x}{57}=\dfrac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)
\(\Leftrightarrow7^x\left(\dfrac{7^2+7+1}{57}\right)=5^{2x}\left(\dfrac{1+5+5^3}{131}\right)\)
\(\Leftrightarrow7^x\dfrac{57}{57}=5^{2x}\dfrac{131}{131}\Leftrightarrow7^x=5^{2x}\Leftrightarrow7^x=25^x\Leftrightarrow x=0\)
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)
b) \(\left|2x-5\right|\)= x+1
\(\Rightarrow\) 2x-5 = x+1
\(\Rightarrow\) 2x-x=1+5
\(\Rightarrow\) x = 6
c) \(\left|3x-2\right|\)-1= x
\(\Rightarrow\) 3x-2-1= x
\(\Rightarrow\)3x-x =2+1
\(\Rightarrow\)2x =3
\(\Rightarrow\) x =\(\dfrac{3}{2}\)=1,5
e) \(\left|7-2x\right|\)+7 = 2x
\(\Rightarrow\)7-2x+7 =2x
\(\Rightarrow\) -2x -2x = -7-7
\(\Rightarrow\) -4x = -14
\(\Rightarrow\) x=\(\dfrac{14}{4}\)=\(\dfrac{7}{2}\)
Bài làm :
\(1\text{)}8x=7,8x+25\Leftrightarrow8x-7,8x=25\Leftrightarrow0,2x=25\Leftrightarrow x=25\div0,2=125\)
\(2\text{)}\left|x+7\right|-3=2\Leftrightarrow\left|x+7\right|=5\Leftrightarrow\orbr{\begin{cases}x+7=5\\x+7=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-12\end{cases}}\)
\(3\text{)}\left(2x-5\right)\div3=7\Leftrightarrow2x-5=21\Leftrightarrow2x=26\Leftrightarrow x=13\)
a,Ta có : 8x=7,8x+25
<=> 8x-7,8x=25
0,2x=25
x=25:0,2
x=25:1/5
x=25.5
=> x=125
b, Ta có : |x+7|-3=2
<=> |x+7|=2+3
|x+7|=5
TH1: x+7=5 TH2: x+7=-5
x=5-7 x=(-5)-7
x=-2 x=-12
c, Ta có: [2x-5]:3=7
<=> 2x-5=7.3
2x-5=21
2x=21+5
2x=26
x=26:2
=> x=13