K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Ta có : B = 12 + 22 + 32 + ...... + 98

              = 1.1 + 2.2 + 3.3 + ...... + 98.98

              = 1.(2 - 1) + 2.(3 - 1) + ...... + 98.(99 - 1)

              = 1.2 - 1 + 2.3 - 2 + ...... + 98.99 - 98

              = (1.2 + 2.3 + 3.4 + ....... + 98.99) - (1 + 2 + 3 + ....... + 98)

              = 98.99.100/3 - 4851

              = 323400 - 4851 

              = 318549

9 tháng 3 2020

ai trả lời đi

Tham khảo ở đây nhé:

https://olm.vn/hoi-dap/question/377835.html

hok tốt!!!

^^

Bài 1: 

a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)

=>\(3P=2^{101}-2\)

hay \(P=\dfrac{2^{101}-2}{3}\)

b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)

=>\(6Q=5^{101}+1\)

hay \(Q=\dfrac{5^{101}+1}{6}\)

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

24 tháng 3 2017

Ta có \(B=1^2+2^2+3^2+.....+98^2\)

\(\Rightarrow B=1.1+2.2+3.3+.....+98.98\)

\(\Rightarrow B=1.\left(2-1\right)+2.\left(3-1\right)+.....+98.\left(99-1\right)\)
\(\Rightarrow B=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(98.99-98\right)\)

\(\Rightarrow B=\left(1.2+2.3+....+98.99\right)-\left(1+2+....+98\right)\)

\(\Rightarrow B=\left(1.2+2.3+...+98.99\right)-\left(\frac{\left(1+98\right).98}{2}\right)\)

\(\Rightarrow B=\left(1.2+2.3+...+98+99\right)-\left(4851\right)\)(1) 

Đặt \(M=1.2+2.3+....+98.99\)

\(\Rightarrow3M=1.2.3+2.3.3+......+98.99.3\)

\(\Rightarrow3M=1.2.\left(3+0\right)+2.3.\left(4-1\right)+.....+98.99.\left(100-97\right)\)

\(\Rightarrow3M=\left(1.2.3+0.1.2\right)+\left(2.3.4-1.2.3\right)+.......+\left(98.99.100-97.98.99\right)\)

\(\Rightarrow3M=98.99.100-0.1.2\)

\(\Rightarrow3M=970200-0\)

\(\Rightarrow3M=970200\)

\(\Rightarrow M=\frac{970200}{3}\)

\(\Rightarrow M=323400\)

\(\Rightarrow1.2+2.3+....+98.99=323400\)

Thay \(1.2+2.3+......+98.99\) \(=323400\) Vào (1) ta được:

\(B=323400-4851\)

\(\Rightarrow B=318549\)

Vậy \(B=318549\)

24 tháng 3 2017

\(B=1.1+2.2+3.3+4.4+5.5+...+98.98\)\(=1.\left(2-1\right)+2.\left(3-1\right)+...+98.\left(99-1\right)\)

\(\left(1.2+2.3+3.4+...+98.99\right)-\left(1+2+...+99\right)\)

\(\Rightarrow a-b=\left(1.2+2.3+...+98.99\right)\)\(-\left[\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\right]\)\(=1+2+3+...+98\)

Tổng của dãy số trên là : \(a-b=\frac{\left(98+1\right).98}{2}=4851\).

9 tháng 8 2016

C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

  =\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\frac{99}{100}\)

  =\(\frac{-98}{100}=\frac{-49}{50}\)

10 tháng 8 2016

C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1 
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1) 
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A 
Dễ thấy 1/2.1 = 1/1 - 1/2 
1/3.2 = 1/2 - 1/3 
..................... 
1/99.98 = 1/98 - 1/99 
1/100.99 = 1/99 - 1/100 
=> cộng từng vế với vế ta

13 tháng 9 2023

Bài 1.

\(B=1+2+3+\cdot\cdot\cdot+98+99\)

Số các số hạng trong \(B\) là:

\(\left(99-1\right):1+1=99\left(số\right)\)

Tổng \(B\) bằng: \(\left(99+1\right)\cdot99:2=4950\)

Bài 2.

\(A=1+3+5+\cdot\cdot\cdot+997+999\)

Số các số hạng trong \(A\) là:

\(\left(999-1\right):2+1=500\left(số\right)\)

Tổng \(A\) bằng: \(\left(999+1\right)\cdot500:2=250000\)

Bài 3.

\(C=2+4+6+\cdot\cdot\cdot+96+98\)

Số các số hạng trong \(C\) là:

\(\left(98-2\right):2+1=49\left(số\right)\)

Tổng \(C\) bằng: \(\left(98+2\right)\cdot49:2=2450\)

#\(Toru\)

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25