K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

84 - 4 x ( 2y + 1 ) = 4

4 x ( 2y + 1 ) = 80

2y + 1 = 20

2y = 19

y = 19/2

20 tháng 7 2020

Câu này dễ mà, sao c lm CTV được:vv

\(\hept{\begin{cases}2x^2+\frac{x}{2x-y}=2\left(1\right)\\y^2+\frac{y}{2x-y}=4\left(2\right)\end{cases}}\)

ĐKXĐ: \(2x-y\ne0\)

Nhân 2 vế PT (1) với 2 rồi trừ đi PT (2) ta được:

\(4x^2-y^2+1=0\left(3\right)\)

Ta xét 2 trường hợp:

TH1:\(2x+y=0\)<=>\(y=-2x\)

Thay vào PT (1) rồi ta tính được \(\left(x;y\right)=\left(\pm\sqrt{\frac{7}{8}};\mp2\sqrt{\frac{7}{8}}\right)\)

TH2: \(2x+y\ne0\)

<=>\(2x-y=\frac{-1}{2x+y}\)

Thay vào PT(1) ta được:

\(xy=-2\)

Thay vào \(4x^2-y^2+1=0\)ta tính được

\(\left(x;y\right)=\left(...\right)\)

Vậy....

Phần tính toán cậu tự tính nhé:vvv

20 tháng 7 2020

@Lê Phúc Huy: lí do mik đã viết thẳng vào câu hỏi. Ngay dòng dòng đầu mà bạn không thấy à. Hay mắt lé mà không thấy :]>

2 tháng 9 2018

\(100-3\times\left(y+8\right)=1.\)

\(3\times\left(y+8\right)=99\)

y+8 = 33

y = 25

10 tháng 2 2020

\(\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=x^3-3x^2+2x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\x^2-y^2=y^3-x^3-3y^2+3x^2+2y-2x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\2\left(y-x\right)\left(y+x\right)=\left(y-x\right)\left(y^2+xy+x^2\right)+2\left(y-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\\left(y-x\right)\left[xy+\left(x-1\right)^2+\left(y-1\right)^2\right]=0\end{cases}}\)

Theo Cauchy-schwarz có: \(\frac{\left(x-1\right)^2}{1}+\frac{\left(1-y\right)^2}{1}\ge\frac{\left(x-y\right)^2}{2}\)Dấu "=" xảy ra <=> x+y=2 (1)

\(\Rightarrow xy+\left(x-1\right)^2+\left(y-1\right)^2\ge xy+\frac{x^2-2xy+y^2}{2}=x^2+y^2\ge0\) Dấu bằng xảy ra <=> x=y=0 (2)

Từ (1) và (2) => \(xy+\left(x-1\right)^2+\left(y-1\right)^2>0\)

\(\Rightarrow x=y\)

=> Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=y^3-3y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)

Tự làm nốt nhé

29 tháng 8 2017

oh yeah 

ko làm dc hihi

4 tháng 4 2018

đề sai òi

(pt có 1 vế kìa)

24 tháng 1 2019

TẠI SAO

24 tháng 1 2019

mik hỏi mà bn

26 tháng 12 2017

chiu ban oi

Bạn @Phùng Khánh Linh làm hơi tắt rồi để mình giúp bạn làm cho dễ hiểu nhá !

\(\left(\dfrac{2x-1}{\sqrt{x^3}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x+4}{x+\sqrt{x}+1}\right)\)

\(=\left(\dfrac{2x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{x+4}{x+\sqrt{x}+1}\right)\)

\(=\left(\dfrac{2x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\dfrac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{x+\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{x+\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

3 tháng 8 2018

\(\left(\dfrac{2x-1}{\sqrt{x^3}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x+4}{x+\sqrt{x}+1}\right)=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{x+\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)