Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
C2: (2x - 3)3 + (6x - 17)3
= (2x - 3 + 6x - 17)\(\left[\left(2x-3\right)^2-\left(2x-3\right)\left(6x-17\right)+\left(6x-17\right)^2\right]\)
= (8x - 20)(4x2 - 12x + 9 - 12x2 + 34x + 18x - 51 + 36x2 - 204x + 289)
= (8x - 20)(4x2 - 12x2 + 36x2 - 12x + 34x + 18x - 204x + 9 - 51 + 289)
= (8x - 20)(28x2 - 164x + 247)
Câu 1:
Ta có: \(3x^3-5x-2\)
\(=3x^3+3x^2-3x^2-3x-2x-2\)
\(=\left(x+1\right)\left(3x^2-3x-2\right)\)
a:Ta có: \(A=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)
b: Ta có: \(B=-3x^2+5x+6\)
\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
c: Ta có: \(C=-x^2+3x+4\)
\(=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(5x.\left(3x-2\right)=4-9x^2\)
\(\Rightarrow5x.\left(3x-2\right)-\left(4-9x^2\right)=0\)
\(\Rightarrow5x.\left(3x-2\right)+\left(9x^2-4\right)=0\)
\(\Rightarrow5x.\left(3x-2\right)+\left(3x-2\right).\left(3x+2\right)=0\)
\(\Rightarrow\left(3x-2\right).\left(5x+3x+2\right)=0\)
\(\Rightarrow\left(3x-2\right).\left(8x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\8x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=2\\8x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{4}\end{cases}}\)
\(\Rightarrow2x^2-2x-x+1=0\\ \Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\\ \Rightarrow\left(2x-1\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
\(\dfrac{-6x^4+7x^3+5x+2}{3x+1}\)
\(=\dfrac{-6x^4-2x^3+9x^3+3x^2-3x^2-x+6x+2}{3x+1}\)
\(=\dfrac{-2x^3\left(3x+1\right)+3x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)}{3x+1}\)
\(=-2x^3+3x^2-x+2\)