K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Bạn dùng phương pháp phân tích đa thức thành nhân tử sẽ đc :

(2x-1).(x+3).(x+2).(3x-1) = 0

<=> x=1/2 hoặc x=-3 hoặc x=-2 hoặc x=1/3

Vậy .............

Tk mk nha

9 tháng 3 2018

giải ra

30 tháng 9 2018

a) Biến đổi  x 2 – 2x + 1 = ( x   –   1 ) 2 ; thực hiện chia được kết quả x – 1.

b) Biến đổi 8 x 3  + 27 = (2x + 3)(4 x 2  – 6x + 9); thực hiện phép chia được kết quả 4 x 2  – 6x + 9.

c) Phân thích x 6   –   6 x 4  + 12 x 2  – 8 = ( x 2 – 2)( x 4  – 4 x 2  + 4); thực hiện phép chia được kết quả - x 4  + 4 x 2  – 4.

13 tháng 7 2021

1. 

\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)

2. 

\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt

Bài 1:

Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)

\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)

\(=6x\left(2x+1\right)\cdot2y\)

\(=12xy\left(2x+1\right)\)

Bài 2: 

Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

21 tháng 8 2017

f ) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt \(x^2+5x+5=t\), ta có :

\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

Thay và ta có :

\(\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)

13 tháng 2 2016

\(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow\)  \(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\)  \(6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left[6x^2\left(x+3\right)-5x\left(x+3\right)+x+3\right]=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\)   \(x+2=0\)  hoặc  \(x+3=0\)  hoặc  \(2x-1=0\)  hoặc  \(3x-1=0\)

\(\Leftrightarrow\)   \(x=-2\)  hoặc \(x=-3\)  hoặc  \(x=\frac{1}{2}\)  hoặc  \(x=\frac{1}{3}\)

Vậy, tập nghiệm của pt là  \(S=\left\{-2;-3;\frac{1}{2};\frac{1}{3}\right\}\)

NV
12 tháng 2 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(6\left(x^2+\frac{1}{x^2}\right)+25\left(x-\frac{1}{x}\right)+12=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

\(\Rightarrow6\left(t^2+2\right)+25t+12=0\)

\(\Leftrightarrow6t^2+25t+24=0\Rightarrow\left[{}\begin{matrix}t=-\frac{3}{2}\\t=-\frac{8}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-\frac{3}{2}\\x-\frac{1}{x}=-\frac{8}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\3x^2+8x-3=0\end{matrix}\right.\)