Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =x^4-3x^5+4x^8
b: =2x^3+2x^2+4x
c: =4x^2+8x-5
d: =2x+3x^2+7x^4
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
\(H\left(x\right)=9x^4-3x^3-11x^2-7x+12\)
\(K\left(x\right)=-8x^4+10x^3+4x^2-7x-12\)
\(A\left(x\right)=H\left(x\right)-K\left(x\right)\)
\(=17x^4-10x^3-15x^2+24\)
Để \(A\left(x\right)=x^4-13x^3-14x^2\) nên \(17x^4-10x^3-15x^2+24=x^4-13x^3-14x^2\)
\(\Leftrightarrow16x^4+3x^3-x^2+24=0\)
Đến đây mình bí rồi, xin lỗi bạn!
h(x)=f(x)-g(x)= 5x^3+3x^2-9x+1-4x3+7x3+6x+16
=8x3+3x2-3x+17
Ta có: \(f\left(x\right)=5x^3+3x^2-9x+1\)
\(g\left(x\right)=4x^3-7x^3-6x-16\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(5x^3+3x^2-9x+1\right)-\left(4x^3-7x^3-6x-16\right)\)
\(=5x^3+3x^2-9x+1-4x^3+7x^3+6x+16\)
\(=8x^3+3x^2-3x+17\)