Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\) ( ĐK : \(x\ne-2\) )
\(\Leftrightarrow\dfrac{12}{x^3+2^3}=1+\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-2\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}\)
a) 3x + 18 = 0
<=> 3*(x+6)=0
<=> x+6=0
<=> x=-6
Vậy S={-6}
6x-7=3x+2
<=> 6x - 3x= 2+7
<=> 3x=9
<=> x=3
Vậy S={ 3}
c) mk ko hỉu rõ đề
\(x^2+6x+6+\left(\frac{x+3}{x+2}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
đặt x+3=y => x+4=y+1
lại có \(y^2+\frac{y^2}{\left(y+1\right)^2}-3=0\)
Tự giải tiếp đi
Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)
(6x+7)2.2.(3x+4).6.(x+1) = 72
=> (6x+7)2. (6x+8).(6x+6)= 72
=> (6x+7)2. (6x+7 + 1)(6x+7 - 1) = 72
=> (6x+7)2. [(6x+7)2 - 1] = 72
=> (6x+7)4 - (6x+7)2 = 72 => (6x+7)4 -9.(6x+7)2 + 8.(6x+7)2 - 72 = 0
=> (6x+7)2. [(6x+7)2 - 9] + 8.[(6x+7)2 - 9] = 0
=> [(6x+7)2 + 8].[(6x+7)2 - 9] = 0
=> (6x+7)2 - 9 = 0 Vì (6x+7)2 + 8 > o với mọi x
=> (6x+7)2 = 9 => 6x + 7 = 3 hoặc -3
6x+ 7 =3 => x = -2/3
6x+7 = -3 => x = -5/3
Vậy x = -2/3; -5/3
(6x +7)2(3x +4)(x +1) =6 <=> (6x +7)2(6x +8)(x +1) = 12
Đặt 6x +7 =t => 6x + 8 = t +1 ; x =(t - 7)/6 ; x +1 = (t -1)/6
Pt trở thành : \(t^2\left(t+1\right)\frac{t-1}{6}=12\Leftrightarrow t^4-t^2-72=0\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
<=> \(t^2-9=0\)( vì t2 +8 >0) <=> t = 3 hay t = -3
t =3 => 6x +7 = 3 => x = -2/3
t= -3 => 6x +7 = -3 => x = -5/3
Ta có pt
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
<=>\(\left(x^2+2xy+y^2\right)+\left(x^2-6x+9\right)+\left|y+3\right|=0\)
<=>\(\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left|y+3\right|\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)=>\(\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
^_^
(6x - 3)(x - 2) = ?
Đề thiếu rồi, sô mà làm được
Thiếu vế phải à?