Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3}{5}+\frac{-4}{15}=\frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}\)
b, \(\frac{-1}{3}+\frac{2}{5}+\frac{2}{15}=\frac{-5}{15}+\frac{6}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}\)
c, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}=\frac{-3}{5}+\frac{1}{3}+\frac{-4}{5}+\frac{7}{5}=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{1}{3}=\frac{1}{3}\)
d, \(\frac{2}{7}+\frac{1}{9}+\frac{3}{7}+\frac{5}{9}+\frac{-5}{6}=\left(\frac{2}{7}+\frac{3}{7}\right)+\left(\frac{1}{9}+\frac{5}{9}\right)+\frac{-5}{6}=\frac{5}{7}+\frac{6}{9}+\frac{-5}{6}=\frac{90}{126}+\frac{84}{126}+\frac{-105}{126}=\frac{69}{126}=\frac{23}{42}\)
e, \(\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}=\left(-1\right)+1+\frac{-1}{5}=\frac{-1}{5}\)
f, \(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\frac{-28}{31}+\frac{-1}{17}+\frac{-1}{5}=\left(\frac{-3}{31}+\frac{-28}{31}\right)+\left(\frac{-6}{17}+\frac{-1}{17}\right)+\left(\frac{1}{25}+\frac{-1}{5}\right)=\left(-1\right)+\frac{-7}{17}+\frac{-4}{25}=\frac{-425}{425}+\frac{-175}{425}+\frac{-68}{425}=\frac{-668}{425}\)
Chúc bn học tốt
\(a,\frac{3}{17}+\frac{-5}{13}+\frac{-18}{35}+\frac{14}{17}+\frac{17}{-35}\)
=\(-\frac{5}{13}+\left(\frac{3}{17}+\frac{14}{17}\right)+\left(\frac{-18}{35}+\frac{-17}{35}\right)\)
= \(-\frac{5}{13}+1+\left(-1\right)\)
=\(-\frac{5}{13}\)
\(b,\frac{-3}{8}.\frac{1}{6}+\frac{3}{-8}.\frac{5}{6}+\frac{-10}{6}\)
=\(\frac{-3}{8}.\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{-10}{6}\)
=\(\frac{-3}{8}.1+\frac{-10}{6}\)
=\(-\frac{49}{24}\)
\(c,\frac{-4}{11}.\frac{5}{15}.\frac{11}{-4}\)
=\(\left(\frac{-4}{11}.\frac{11}{-4}\right).\frac{1}{3}\)
=\(1.\frac{1}{3}=\frac{1}{3}\)
\(d,\frac{13}{8}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-25\%.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\left(\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{4}.\frac{1}{2}\)
=\(\frac{13}{8}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}\)
=\(\frac{13}{8}+\frac{1}{2}+\frac{-1}{8}\)
=\(\left(\frac{13}{8}+\frac{-1}{8}\right)+\frac{1}{2}\)
=\(\frac{3}{2}+\frac{1}{2}=2\)
\(e,\frac{-1}{2^2}-\left(-2\right)^2-5\)
=\(\frac{-1}{4}-4-5\)
=\(-\frac{37}{4}\)
\(f,\frac{121}{3}-\frac{5}{7}:\left(24-\frac{23}{57}\right)\)
=\(\frac{121}{3}-\frac{5}{7}:\frac{1345}{57}\)
=\(\frac{121}{3}-\frac{57}{1883}\)
\(\approx40,4\)
1)
A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
= \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
= \(\frac{1}{5}-\frac{1}{12}\)
= \(\frac{7}{60}\)
B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
= \(\frac{3.4.5.....100}{2.3.4....99}\)
= \(\frac{100}{2}=50\)
C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)
= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)
= \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)
= \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)
= \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
~ Hok tốt ~
Abcfsgsgsgsgsggggggghyhjgfhnhgjfgefhefrgjhfgjhergfyebfqybrfjyebrfyerbfjqyrfgjyerqfyearfyaberjybqrfjhwqdicuvdaciuvicvdcu
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)
a/ Tinh giá trị:
\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\)
b/ Chứng minh:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
- Với mọi số tự nhiên n khác không thì luôn có: \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\)
c/ Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
\(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy: \(F>\frac{7}{12}\) .
`1/3+ -1/4+1/5+ -1/6+1/7+1/6+1/(-5)+1/4+ -1/3`
`=(1/3-1/3)+(1/4-1/4)+(1/5-1/5)+(1/6-1/6)+1/7`
`=0+0+0+0+1/7`
`=1/7`
alo
giải dùm mình với