Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6ax2+4ax-9x-6 = 0
<=> ( 6ax2+4ax ) - ( 9x+6 ) = 0
<=> 2ax(3x+2) - 3(3x+2) = 0
<=> ( 2ax-3 )( 3x+2 ) = 0
<=> \(\left[{}\begin{matrix}2ax-3=0\\3x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2ax=3\\3x=-2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2a}\\x=\frac{-2}{3}\end{matrix}\right.\)
Ta co:6ax^2+4ax—9x—6=0
«=»2ax(3x+2)—3(3x+2)=0
«=»(3x+2)(2ax—3)=0
các bục sau tu giai
ta có : 6ax2+4ax-9x-6=0
\(\Leftrightarrow\)2ax(3x+2)-3(3x+2)=0
\(\Leftrightarrow\)(3x+2)(2ax-3)=0
xét 3x+2=0\(\Rightarrow\)x=\(\frac{-2}{3}\)
thay x vừa tìm được vào ta tính được a=\(\frac{-13}{3}\)
ax(4x2 - 1) - 3(4x2 - 1) = 0
(4x2 - 1) (ax - 3) = 0
4x2 - 1 = 0 => x = + - 1/2
ax - 3 = 0 => a = 3/x
Rút gọn biểu thức ta có:
Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)