Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^4=\left(-\frac{1}{2}\right)^5=-\frac{1}{32}\)
2. \(6.3^2-24:2^3=6.9-24:8=54-3=51\)
3. \(\left(\frac{1}{4}\right)^2.\left(\frac{1}{4}\right)^3=\left(\frac{1}{4}\right)^5=\frac{1}{1024}\)
1) (-1/2).(-1/2)^4 = ( -1/2)^ 5 = -1/32
2) 6.3^2 - 24:2^3 = 6,9 - 24 : 8 = 54 - 3 = 51
3) (1/4)^2 . (1/4)^3 = ( 1/4)^5 = 1/1024
Bạn viết sai phân số cuối cùng.
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2\sqrt{1}-1\sqrt{2}}{\left(2\sqrt{1}+1\sqrt{2}\right)\left(2\sqrt{1}-1\sqrt{2}\right)}=\frac{2\sqrt{1}-1\sqrt{2}}{\left(2\sqrt{1}\right)^2-\left(1\sqrt{2}\right)^2}=\frac{2\sqrt{1}-1\sqrt{2}}{2^21-1^22}=\frac{2\sqrt{1}-1\sqrt{2}}{1.2}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự:
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{3\sqrt{2}-2\sqrt{3}}{3^22-2^23}=\frac{3\sqrt{2}-2\sqrt{3}}{2.3}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
....
\(\frac{1}{25\sqrt{24}+24\sqrt{25}}=\frac{25\sqrt{24}-24\sqrt{25}}{25^224-24^225}=\frac{25\sqrt{24}-24\sqrt{25}}{25.24}=\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)
Vậy \(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=\frac{1}{1}-\frac{1}{5}=\frac{4}{5}\)
a) \(14^{26}.\frac{5^{24}}{2^{25}}.35^{24}\)
\(=14^{26}.35^{24}.\frac{5^{24}}{3^{25}}\)
\(=14^{26}.\frac{35^{24}.5^{24}}{3^{25}}\)
\(=14^{26}.\frac{\left(35.5\right)^{24}}{3^{25}}\)
\(=14^{26}.\frac{175^{24}}{3^{25}}\)
b) \(\left(\frac{3}{5}\right)^{2018}.x=\left(\frac{3}{5}\right)^{2016}\)
\(\Leftrightarrow x=\left(\frac{3}{5}\right)^{2016}:\left(\frac{3}{5}\right)^{2018}\)
\(\Leftrightarrow x=\left(\frac{3}{5}\right)^{-2}\)
\(\left(\frac{3}{5}\right)^{2018}.x=\left(\frac{3}{5}\right)^{2016}\)
\(\Rightarrow x=\left(\frac{3}{5}\right)^{2016}:\left(\frac{3}{5}\right)^{2018}\)
\(\Rightarrow x=\left(\frac{3}{5}\right)^{-2}\)
\(\Rightarrow x=\frac{25}{9}.\)
Vậy \(x=\frac{25}{9}.\)
Chúc bạn học tốt!
\(1-\frac{2}{1.2.2.3:4}-\frac{3}{2.3.3.4:4}-...-\frac{25}{24.25.25.26:4}\)
\(=1-\left(\frac{4}{1.2.3}+\frac{4}{2.3.4}+\frac{4}{3.4.5}+...+\frac{4}{24.25.26}\right)\)
\(=1-2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{24.25}-\frac{1}{25.26}\right)\)
\(=1-2\left(\frac{1}{1.2}-\frac{1}{25.26}\right)\)
\(=\frac{1}{325}\)
a: \(12\cdot25=15\cdot20\)
=>\(\dfrac{12}{15}=\dfrac{20}{25};\dfrac{12}{20}=\dfrac{15}{25};\dfrac{15}{12}=\dfrac{25}{20};\dfrac{20}{12}=\dfrac{25}{15}\)
b: \(3\cdot\left(-24\right)=6\cdot\left(-12\right)\)
=>\(\dfrac{3}{6}=\dfrac{-12}{-24};\dfrac{3}{-12}=\dfrac{6}{-24};\dfrac{6}{3}=\dfrac{-24}{-12};\dfrac{-12}{3}=\dfrac{-24}{6}\)
c: \(2,5\cdot3,5=7\cdot1,25\)
=>\(\dfrac{2.5}{7}=\dfrac{1.25}{3.5};\dfrac{2.5}{1.25}=\dfrac{7}{3.5};\dfrac{7}{2.5}=\dfrac{3.5}{1.25};\dfrac{1.25}{2.5}=\dfrac{3.5}{7}\)
P/s: Chuyển tất cả các hạng tử sang 1 vế rồi cộng thêm 1 vào các vế có dấu (+) đằng trước, cộng thêm -1 vào các hạng tử có dấu (-) phía trước rồi đặt nhân tử chung ra ngoài ta được:
\(Pt\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1979}-\frac{1}{1980}-\frac{1}{1981}-\frac{1}{1982}-\frac{1}{25}+\frac{1}{24}+\frac{1}{23}+\frac{1}{22}\right)=0\)
\(\Leftrightarrow x-2004=0\)
\(\Rightarrow x=2004\)
Vậy x = 2004
https://olm.vn/hoi-dap/detail/263823966145.html?pos=616279814817