Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
\(\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)
\(\Rightarrow\left[\left(x+1\right)\left(x+2\right)\right].\left[\left(x+5\right)\left(x+6\right)\right]-60=0\)
\(\Rightarrow\left[\left(x+1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+5\right)\right]-60=0\)
\(\Rightarrow\left(x^2+7x+6\right)\left(x^2+7x+10\right)-60=0\left(1\right)\)
Đặt \(x^2+7x+6=a\Rightarrow x^2+7x+10=a+4\)
Thay vào (1), ta có:
\(a\left(a+4\right)-60=0\)
\(\Rightarrow a^2+4a-60=0\)
\(\Rightarrow a^2+10a-6a-60=0\)
\(\Rightarrow a\left(a+10\right)-6\left(a+10\right)=0\)
\(\Rightarrow\left(a-6\right)\left(a+10\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=6\\a=-10\end{cases}}\)
- Nếu \(x^2+7x+6=6\)
\(\Rightarrow x^2+7x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}\)
- Nếu \(x^2+7x+6=-10\)
\(\Rightarrow x^2+7x+16=0\)
Mà \(x^2+7x+16=x^2+2.x.\frac{7}{2}+\frac{49}{4}+\frac{15}{4}=\left(x+\frac{7}{2}\right)^2+\frac{15}{4}>0\forall x\)
Vậy \(x=0,x=-7\)
Học tốt.
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
\(\dfrac{1.2}{1^2}.\dfrac{2.3}{2^2}.\dfrac{3.4}{3^2}...\dfrac{9.10}{9^2}.\dfrac{10.11}{10^2}\left(x-2\right)=-20\left(x+1\right)+60\)
\(\Leftrightarrow\dfrac{1.2^2.3^2.4^2...10^2.11}{1^2.2^2.3^2....10^2}\left(x-2\right)+20\left(x+1\right)=60\)
\(\Leftrightarrow11\left(x-2\right)+20\left(x+1\right)=60\)
\(\Leftrightarrow31x=62\)
\(\Rightarrow x=2\)
a) \(\left(x-y\right)^2=x^2-2xy+y^2=x^2+y^2-2xy\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy=7^2+2.60\)
\(\Rightarrow x^2+y^2=169\)
\(\left(x+y\right)^2=x^2+y^2+2xy=169+2.60\)
\(\Rightarrow\left(x+y\right)^2=289=17^2\)
\(\Rightarrow x+y=17\)
\(x^2-y^2=\left(x+y\right)\left(x-y\right)=17.7=119\)
b) \(\left(x^2+y^2\right)^2=\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2=x^4+y^4+2\left(xy\right)^2\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=169^2-2.60^2\)
\(\Rightarrow x^4+y^4=28561-7200=21361\)
Ta có: \(x-y=7\)
\(\Leftrightarrow\left(x-y\right)^2=7^2\)
\(\Leftrightarrow x^2-2xy+y^2=49\)
\(\Leftrightarrow x^2+2xy+y^2-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2-4\cdot60=49\) (vì \(xy=60\))
\(\Leftrightarrow\left(x+y\right)^2=49+240\)
\(\Leftrightarrow\left(x+y\right)^2=289\)
\(\Rightarrow x+y=17\) (vì \(x>y>0\))
Mặt khác: \(x^2-y^2\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=7\cdot17\) (vì \(x-y=7;x+y=17\))
\(=119\)
#Urushi☕
Ta có:
\(x-y=7\)
\(\Leftrightarrow y=x-7\) (1)
Mà: \(xy=60\) (2)
Thay (1) vào (2) ta có:
\(x\cdot\left(x-7\right)=60\) (ĐK: \(x>y>0\))
\(\Leftrightarrow x^2-7x=60\)
\(\Leftrightarrow x^2-7x-60=0\)
\(\Leftrightarrow x^2+5x-12x-60=0\)
\(\Leftrightarrow x\left(x+5\right)-12\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-12\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=-5\left(ktm\right)\end{matrix}\right.\)
Ta có: \(x=12\)
\(\Leftrightarrow y=12-7=5\)
Giá trị của bt là:
\(12^2-5^2=144-25=119\)
\(\dfrac{60}{x}-\dfrac{60}{x+20}=\dfrac{1}{2}\left(đk:x>0\right)\)
\(\Leftrightarrow\dfrac{120\left(x+20\right)-120x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow120x+2400-120x-x^2-20x=0\)
\(\Leftrightarrow-x^2-20x+2400=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=40\left(n\right)\\x_2=-60\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{40\right\}\)