Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ge8\)
\(\frac{4.x!}{8!.\left(x-8\right)!}=\frac{5.\left(x-1\right)!}{7!.\left(x-8\right)!}\)
\(\Leftrightarrow\frac{4x}{8}=5\Rightarrow x=10\)
a) Ta có g(x) = = (x2 + 2x + 4) = 22 +2.2 +4 = 12.
Vì g(x) ≠ g(2) nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12.
bạn không đăng câu hỏi thì sao mọi người giúp bạn được.
a) Học sinh tự vẽ hình. Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).
b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).
+) Nếu x> -1: f(x) = x2 - 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).
+) Tại x = -1;
Ta có f(x) = (3x + 2) = 3(-1) +2 = -1.
f(x) = (x2 - 1) = (-1)2 - 1 = 0.
Vì f(x) ≠ f(x) nên không tồn tại f(x). Vậy hàm số gián đoạn tại
x0 = -1.