Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi nha mình không biết chủ đề nào nên mới chọn đại đây là bài của lớp 7 nha các bạn
\(y'=3mx^2-4mx-\left(m+1\right)\)
- Với \(m=0\Rightarrow y'=-1< 0\) hàm nghịch biến trên R (thỏa)
- Với \(m\ne0\) hàm nghịch biến trên R khi:
\(\left\{{}\begin{matrix}3m< 0\\\Delta'=4m^2+3m\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\7m^2+3m\le0\\\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{3}{7}\le m< 0\)
Vậy \(-\dfrac{3}{7}\le m\le0\Rightarrow m=0\)
S có 1 phần tử
Bài giải
8 phút 54 giây x 2 = 16 phút 108 giây ( 108 giây = 1 phút 18 giây ) = 17 phút 18 giây
38 phút 18 giây : 6 = 6 phút 23 giây
( 5 phút 35 giây + 6 phút 31 giây ) : 4
= 12 phút 6 giây : 4
= 3 phút 1,5 giây = khoảng 3 phút 1 giây
1) Ta có \(y'=\left(x^6\left(1-x\right)^5\right)'\)
\(=\left(x^6\right)'\left(1-x\right)^5+\left[\left(1-x\right)^5\right]'.x^6\)
\(=6x^5\left(1-x\right)^5+5\left(1-x\right)^4\left(1-x\right)'.x^6\)
\(=6x^5\left(1-x\right)^5-5x^6\left(1-x\right)^4\)
\(=x^5\left(1-x\right)^4\left[6\left(1-x\right)-5x\right]\)
\(=x^5\left(1-x\right)^4\left(6-11x\right)\)
\(y'=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{6}{11}\end{matrix}\right.\)
Vậy hàm số đã cho đạt cực trị tại \(x=0,x=1,x=\dfrac{11}{6}\)
2) Có \(y'=-2.\left(2x\right)'\sin2x\) \(=-4\sin2x\)
\(y'=0\Leftrightarrow\sin2x=0\) \(\Leftrightarrow2x=k\pi\left(k\inℤ\right)\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\) \(\left(k\inℤ\right)\)
Vậy hàm số đã cho đạt cực trị tại \(x=\dfrac{k\pi}{2}\left(k\inℤ\right)\)
Bài 1:1×2×3×4×5×6×7×8×9×10 bằng mấy? Bài 2:5×5×5×5×5×5×5×5×5×5=3628800
Bài 2:9×9×9×9×9×9×9×9×9×9 = 3486784401 (bạn k cho mình nha)
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
bằng 25
5*5=25