K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
16 tháng 12 2016
\(A=3+3^2+3^3+3^4+...+3^{10}\)
=> \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
=> \(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
=> \(A=3.4+3^3.4+...+3^9.4\)
=> \(A=4\left(3+3^3+...+3^9\right)\)chia hết cho 4 (Đpcm)
16 tháng 12 2016
A = 3 + 32 + 33 + ... + 39 + 310
=> A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 39 + 310 )
=> A = 3( 1 + 3 ) + 33( 1 + 3 ) + ... + 39( 1 + 3 )
=> A = 3 . 4 + 33 . 4 + ... + 39 . 4
=> A = ( 3 + 33 + ... + 39 ) . 4 chia hết cho 4
=> A chia hết cho 4
Vậy...
(-5)3.\(x^2\) = - 1125
\(x^2\) = (-1125) : (-53)
\(x^2\) = 9
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
\(\left(-5\right)^3.x^2=-1125\)
\(x^2=-1125:\left(-5\right)^3\)
\(x^2=-1125:\left(-125\right)\)
\(x^2=9\)
\(x^2=3^2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
⇒ Vậy \(x\in\left\{{}\begin{matrix}3\\-3\end{matrix}\right.\)