Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn là \(f(x)=\frac{1}{9+x^2}+\frac{3}{9+x^2}\) hay thế nào? Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn).
\(S=1+3+3^2+...+3^{99}\)
\(\Rightarrow3S=3+3^2+...+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+...+3^{100}\right)-\left(1+3+..+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow S=\frac{3^{100}-1}{2}\)
S=\(1+3+3^2+3^3+...+3^{99}\)
3S=\(3+3^2+3^3+3^4+...+3^{100}\)
3S-S hay 2S=\(3^{100}-3\)
S=\(\left(3^{100}-3\right):2\)
Hok tốt!!!
Lời giải:
Ta có \(A=\frac{a^{\frac{1}{3}}-a^{\frac{7}{3}}}{a^{\frac{1}{3}}-a^{\frac{4}{3}}}-\frac{a^{\frac{1}{3}}-a^{\frac{5}{3}}}{a^{\frac{2}{3}}+a^{\frac{1}{3}}}\)
\(=\frac{\sqrt[3]{a}-\sqrt[3]{a^7}}{\sqrt[3]{a}-\sqrt[3]{a^4}}-\frac{\sqrt[3]{a}-\sqrt[3]{a^5}}{\sqrt[3]{a^2}+\sqrt[3]{a}}\)
\(=\frac{\sqrt[3]{a}(1-a^2)}{\sqrt[3]{a}(1-a)}-\frac{\sqrt[3]{a}(1-\sqrt[3]{a^4})}{\sqrt[3]{a}(1+\sqrt[3]{a})}=\frac{1-a^2}{1-a}-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
\(=1+a-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
Đặt \(\sqrt[3]{a}=t\Rightarrow A=1+t^3-\frac{1-t^4}{1+t}=1+t^3-\frac{(1-t^2)(1+t^2)}{1+t}\)
\(=1+t^3-\frac{(1-t)(1+t)(1+t^2)}{1+t}=1+t^3-(1-t)(1+t^2)\)
\(=2t^3-t^2+t\)
\(M=3^0+3^1+3^2+...+3^{2023}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2020}+3^{2021}+3^{2022}+3^{2023}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+...+3^{2020}\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+...+3^{2020}\cdot40\)
\(=40\left(1+3^4+...+3^{2020}\right)\)
\(=20\cdot2\left(1+3^4+...+3^{2020}\right)⋮20\)
a: Sửa đề: Tìm GTNN
B=|x-2022|+|x-1|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)
=21(1-3^3+3^6-...-3^21) chia hết cho 21
C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)
=-60(1+3^4+...+3^20) chia hết cho 60
=>A chia hết cho BCNN(21;60)=420
\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(f\left(-1\right)=-2;f\left(0\right)=2;f\left(2\right)=-2\)
\(\Rightarrow M=2;m=-2\Rightarrow P=6\)
Cả 4 đáp án đều sai (kiểm tra lại đề bài, có đúng là \(f\left(x\right)=x^3-3x^2+2\) hay không?)
= 7939181077089481