Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{5^2\cdot2^9\cdot3^9\cdot2\cdot5+2^5\cdot2^3\cdot3^5\cdot5^3\cdot3^3}{5^2\cdot2^8\cdot3^8\cdot2\cdot5-2\cdot2^8\cdot3^8\cdot2^3\cdot5^3}\)
\(=\dfrac{5^3\cdot2^{10}\cdot3^9+5^3\cdot2^8\cdot3^8}{5^3\cdot2^9\cdot3^8-5^3\cdot2^{12}\cdot3^8}\)
\(=\dfrac{5^3\cdot2^8\cdot3^8\left(2^2\cdot3+1\right)}{5^3\cdot2^9\cdot3^8\left(1-2^3\cdot1\right)}=\dfrac{1}{2}\cdot\dfrac{13}{1-9}=-\dfrac{13}{16}\)
Có: \(\dfrac{5^2.6^9.10+6^5.2^3.15^3}{5^2.6^8.10-2.6^8.10}=\dfrac{5^2.2^9.3^9.2.5+2^5.3^5.2^3.3^3.5^3}{5^2.2^8.3^8.2.5-2.2^8.3^8.2^3.5^3}\)
=\(\dfrac{2^{10}.3^95^3+2^8.3^8.5^3}{2^9.3^8.5^3-2^{12}.3^8.5^3}=\dfrac{2^8.3^8.5^3.\left(12+1\right)}{2^8.3^8.5^3\left(2-16\right)}\)
= \(\dfrac{12+1}{2-16}=\dfrac{-13}{14}\)
\(\frac{5^2.6^9.10+6^5.2^3.15^3}{5^2.6^8.10-2.6^8.10^3}=\frac{5^2.2^9.3^9.2.5+2^5.3^5.2^3.5^3.3^3}{5^2.2^8.3^8.2.5-2.2^8.3^8.2^3.5^3}\)
\(=\frac{2^{10}.3^9.5^3+2^8.3^8.5^3}{2^9.3^8.5^3-2^{12}.3^8.5^3}=\frac{2^8.3^8.5^3\left(2^2.3+1\right)}{2^9.3^8.5^3\left(1-2^3\right)}\)
\(=\frac{13}{2.-7}=-\frac{13}{14}\)
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{2^3.3^3+2.2^2.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\=\dfrac{2^3.3^3+2^3.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2^3.\left(3^3+3^2+1\right)}{37}=\dfrac{2^3.37}{37}=2^3=8\)
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{216+72+8}{37}=\dfrac{296}{37}=8\)
Bài giải
\(\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot6\right)^6+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^4}{2^{12}\cdot6^6+\left(2^3\right)^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot2^6\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^4\left(2^6\cdot3^2+3\right)}\)
\(=\frac{2}{64\cdot9+3}=\frac{2}{576+3}=\frac{2}{579}\)
= -14/13