Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a,\(\left(2013\times2014+2014\times2015+2015\times2016\right)\times\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013\times2014+2014\times2015+2015\times2016\right)\times\left(1\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013\times2014+2014\times2015+2015\times2016\right)\times0\)
\(=0\)
b, \(17,75+16,25+14,75+13,25+...+4,25+2,75+1,25\)
\(=\left(17,75+1,25\right)+\left(16,25+2,75\right)+...+9,75\)
\(=19\times7+9,75\)
\(=142,75\)
Hok Tốt!!!!
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )
\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)
\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Ghép tử và mẫu \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)
Vậy \(A=2016\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2015}\)
\(=\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2015.2016}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=2.\left(1-\frac{1}{2016}\right)\)
\(=2.\frac{2015}{2016}=\frac{2015}{1008}\)
Có: \(A=\frac{1}{2013}x\frac{2015}{2014}-\frac{2014}{2013}\)
\(=\frac{1}{2013}.\frac{2015}{2014}-\frac{1}{2013}.2014=\frac{1}{2013}.\left(\frac{2015}{2014}-2014\right)\)
Xin lỗi ! Mk chỉ làm được phần c là :
Ta có nhóm các chữ số chỉ có hàng thập phân là 75 và 25 ra vậy ta được :
1,25 + 4.25 + 7,25 + 10,25 + 13,25 + 16,25
=> 17,5 + 17,5 + 17,5 = 52,5
2,75 + 5,75 + 8,75 + 11,75 + 14,75 + 17,75
=> 20,5 + 20,5 + 20,5 = 61,5
61,5 + 52,5 = 114
3 k nhe