K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Ghi vào màn hình: 2008log( 2008 )
Ấn = máy hiện kết quả:6631.949527....
Ấn tiếp - 6631 =
Ghi lại vào màn hình: 
Ấn =, máy ra kết quả 8.90279931
Vậy 5 số đầu là 89027.

31 tháng 12 2015

ko có casio chỉ có vinacal

31 tháng 12 2015

a mi ns casio là mik bít cậu chơi...cậu chơi....cậu chơi...thôi ko bít nữa

28 tháng 3 2017

Tìm số tận cùng của \(2017^{2008}\)

Ta có: 20174 tận cùng là 1.

=> 20172008 = (20174)502 tận cùng là 1.

Tìm số tận cùng của 81978

Ta có 24 tận cùng là 6.

=> 81978 = 25934 = 22.(24)1483 tận cùng là 4 (4.6=24)

Tương tự cho 2 số còn lại

25 tháng 10 2016

Cô sẽ trả lời bằng tiếng Việt !
Chia các số từ 1, tới 2008 thành các nhóm nhỏ:
1 ,2, ...., 9 : có số mà tổng các chữ số chia hết cho 5 là 5.
10,11......, 19
20,21,....., 29.
...............
2000, 2001, ......, 2008 có 2 số mà tổng các chữ số chia hết cho 5 là: 2003, 2008.
Thật vậy gọi 10 số trong mỗi nhóm còn lại  là: \(a_1,a_2,....,a_{10}\).
Ta chứng minh mỗi nhóm có đúng 2 số mà tổng các chữ số chia hết cho 5.
Thật vậy: Gọi tổng các chữ số của các số trong nhóm lần lượt là: \(x_1,x_2,x_3,....,x_{10}\)
Dễ thấy các \(x_1,x_2,x_3,.....,x_{10}\) là các số tự nhiên liên tiếp.
Lấy 5 số tự ban đầu là: \(x_1,x_2,x_3,x_4,x_5\). Trong 5 số tự nhiên liên tiếp này luôn có 1 số chia hết cho 5.
Gọi số đó là \(x_k,1\le k\le5\) thì số còn lại trong nhóm là: \(x_{k+5}\).
Vậy trong các số \(a_1,a_2,....,a_{10}\)luôn có 2 số mà tổng các chữ số chia hết cho 5.
Số các nhóm là: ( 2008 - 9  - 9 ) : 10 = 199 ( số).
Vậy số các số nguyên từ 1 tới 2008 mà có tổng các chữ số chia hết cho 5 là: 
 1 + 199 x 2 + 2 = 401 ( số)

 

24 tháng 10 2016

401 số nha bạn

lấy 2005/5=401

14 tháng 7 2017

Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:

\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:

\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => B < A.

14 tháng 7 2017

Thiệt ta là tui chép sách ngaingung