Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
Rút gọn A trước khi tính :
\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)
\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)
Thay \(x=-2,y=\frac{3}{4}\) vào A có :
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)
\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)
:)) Số xấu ....
Xét biểu thức A, ta suy ra:
\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)
Tại x=-2 và y=3/4 thì:
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)
(phần này bạn tự tính)
\(\)
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
\(A+B+C=4+17-9=12>0\Rightarrow\) ít nhất 1 trong 3 đa thức phải có giá trị dương
2. Bài này cần điều kiện x;y là các số nguyên mới giải được
\(8x-16-5y+15=0\)
\(\Leftrightarrow8\left(x-2\right)=5\left(y-3\right)\)
Do 8 và 5 nguyên tố cùng nhau \(\Rightarrow x-2⋮5\Rightarrow x-2=5k\Rightarrow x=5k+2\)
\(\Rightarrow y=8k+3\)
Vậy nghiệm của pt là \(\left(x;y\right)=\left(5k+2;8k+3\right)\) với \(k\in Z\)
\(H-\left(3x^2y^2-7xy+3\right)=-5x^2y^2+7xy-y^4-5\)
=> \(H=\left(-5x^2y^2+7xy-y^4-5\right)+\left(3x^2y^2-7xy+3\right)\)
=> \(H=-2x^2y^2-y^4-2\)
Ta có \(-2x^2y^2\le0\)với mọi giá trị của x
\(-y^4\le0\)với mọi giá trị của x
=> \(-2x^2y^2-y^4-2< 0\)với mọi giá trị của x
Vậy tại mọi giá trị của x, y thì H luôn âm (đpcm)
Khi x=2 và y=1/2 thì
A=6*2*1/4+7*2*1/8-8*4*1/8
=3+7/4-4
=7/4-1=3/4
`5)`
`A = 6xy^2 + 7xy^3 - 8x^2y^3`
Thay `x = 2; y = 1/2` vào A
`A = 6*2*(1/2)^2 + 7*2*(1/2)^3 - 8*2^2 * (1/2)^3`
`= 12*1/4 + 14*1/8 - 32*1/8`
`= 3 + 7/4 - 4`
`= -1 + 7/4`
`= 3/4`
Vậy, `A = 3/4.`