K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2020

\(A+B+C=4+17-9=12>0\Rightarrow\) ít nhất 1 trong 3 đa thức phải có giá trị dương

2. Bài này cần điều kiện x;y là các số nguyên mới giải được

\(8x-16-5y+15=0\)

\(\Leftrightarrow8\left(x-2\right)=5\left(y-3\right)\)

Do 8 và 5 nguyên tố cùng nhau \(\Rightarrow x-2⋮5\Rightarrow x-2=5k\Rightarrow x=5k+2\)

\(\Rightarrow y=8k+3\)

Vậy nghiệm của pt là \(\left(x;y\right)=\left(5k+2;8k+3\right)\) với \(k\in Z\)

26 tháng 2 2020

Em cảm ơn ạ

Ta có:

M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)

= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7

= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7

= 3x^2y^2 + 2y^2 + 7x^4 + 7

x^2≥0;y^2≥0⇒3x^2y^2≥0​ (1)

y^2≥0⇒2y^2≥0(2)

x4≥0⇒7x4≥0 (3)

7 > 0 (4)

Từ (1), (2)(3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0

Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y

A(x)=5x^4-3x^3-7x^2+4x+2

B(x)=-5x^4+3x^3+6x^2-2x-30

A(x)+B(x)=-x^2+2x-28=-(x-1)^2-27<0

=>A(x) và B(x) ko đồng thời dương

6 tháng 5 2018

tham khảo ở đây:https://olm.vn/hoi-dap/question/936076.html

6 tháng 5 2018

https://olm.vn/hoi-dap/question/936076.html