K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

(5-4x).(5+4x)-(4x-3)2

= 25-16x2-(16x2-24x+9)

= 25-16x2-16x2+24x-9

=-32x2+ 24x+16

25 tháng 10 2017

\(\left(5-4x\right)\left(5+4x\right)-\left(4x-3\right)^2=25-16x^2-\left(16x^2-24x+9\right)=-24x+16\)

15 tháng 3 2021

\(PT\Leftrightarrow x^5-1=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x^4+x^3+x^2+x+1=0\end{matrix}\right.\).

Nếu \(x^4+x^3+x^2+x+1=0\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\Leftrightarrow x=1\). Thử lại ta thấy không thoả mãn.

Do đó ta có \(x-1=4\Leftrightarrow x=5\).

Vậy...

.

15 tháng 3 2021

mình cảm ơn bạn nhé 

 

 

 

 

a: A=(4x+5)^2-2*(4x+5)(4x-5)+(4x-5)^2

=(4x+5-4x+5)^2

=10^2=100

b:  B=(3x-2)^2*(3x+2)^2-2(2x+3)(2x-3)

=(9x^2-4)^2-2(4x^2-9)

=81x^4-72x^2+16-8x^2+18

=81x^4-80x^2+34

3 tháng 9 2023

\(a,A=\left(4x-5\right)^2+\left(4x+5\right)^2+2\left(5+4x\right)\left(5-4x\right)\)

\(=\left(5-4x\right)^2 +2\left(5-4x\right)\left(4x+5\right)+\left(4x+5\right)^2\)

\(=\left(5-4x+4x+5\right)^2\)

\(=10^2\)

\(=100\)

\(b,B=\left(3x-2\right)^2\left(3x+2\right)^2-2\left(2x+3\right)\left(2x-3\right)\)

\(=\left(9x^2-4\right)^2-2\left(4x^2-9\right)\)

\(=81x^4-72x^2+16-8x^2+18\)

\(=81x^4-80x^2+34\)

#\(Urushi\)

13 tháng 3 2022

\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)

1 tháng 9 2018

(4x-3).(4x+2) + (4x+5).(1-4x) = 2.52

16x2 + 8x - 12x - 6 + 4x - 16x2 + 5 - 20x = 50

(16x2 - 16x2) + ( 8x-12x+4x-20x) - (6-5) = 50

-20x = 50

x = -5/2

16 tháng 7 2018

          \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)

\(\Leftrightarrow\)\(16x^2-9-\left(16x^2-40x+25\right)=46\)

\(\Leftrightarrow\)\(40x-34=46\)

\(\Leftrightarrow\)\(40x=80\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

2 tháng 10 2019

\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)

\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)

\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)

\(\Leftrightarrow40x-34=46\Leftrightarrow40x=80\Leftrightarrow x=2\)

x= 2 bấm máy tính là tự ra à

31 tháng 5 2021

\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x

\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)

\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)

\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)

\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)

31 tháng 5 2021

\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x

\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)

\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)

\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)

\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)