K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

nhân tung ra ghép lại

20 tháng 12 2016

với bài này không cần nhân ra:

<=> (4x-3)^2+3x(4x-3)=0

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\Leftrightarrow x=\frac{3}{4}\\4x-3+3x=0\Leftrightarrow x=\frac{3}{7}\end{cases}}\)

\(-4x^5\left(x^3-4x^2+7x-3\right)\)

\(=-4x^8+16x^7-28x^6+12x^5\)

b) \(3x^4\left(-2x^3+5x^2-\frac{2}{3}x+\frac{1}{3}\right)\)

\(=-6x^7+15x^6-2x^5+x^4\)

11 tháng 8 2016

đáp án câu a và b có rút gọn được không?

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

13 tháng 2 2022

1.

a.\(\Leftrightarrow7x-5x=3+12\)

\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)

b.\(\Leftrightarrow6x-10-7x-7=2\)

\(\Leftrightarrow x=-19\)

c.\(\Leftrightarrow1-3x=4x-3\)

\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)

d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)

\(\Leftrightarrow-2=12\left(voli\right)\)

13 tháng 10 2021

c: Ta có: \(x^3+3x^2+3x-7=0\)

\(\Leftrightarrow x+1=2\)

hay x=1

b: Ta có: \(x\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

11 tháng 9 2019

\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)

\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)

\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)

11 tháng 9 2019

\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)

\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)

\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)

\(\Leftrightarrow4x^2+6x-51=0\)

\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)

9 tháng 2 2019

hướng dẫn cách làm-tự làm tiếp nha :)

a) đặt \(k=x^2-4x\), ta có:\(k^2-2k=15\)\(\Rightarrow k^2-2x+1=16\Rightarrow\left(k-1\right)^2=4^2=\left(-4\right)^2\)

b) đặt \(A=x^2-3x\), ta có: \(A^2-2A-8=0\Rightarrow A^2-2A+1=9\Rightarrow\left(A-1\right)^2=3^2=\left(-3\right)^2\)

c)theo đề \(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2-8x+9=0\end{cases}}\)

\(x^2-4x+3=0\Leftrightarrow x^2-4x+4=1\Leftrightarrow\left(x-2\right)^2=1^2=\left(-1\right)^2\)

\(x^2-8x+9=0\Leftrightarrow x^2-8x+16=7\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{7}^2\)

9 tháng 2 2019

vt ko chi tiết bn ib là đc rùi, sai tớ làm gì T.T 

mà tớ làm mẫu 1 bài thui nha, bài còn lại có cách làm òi. bn tự dựa vô nha

\(\text{Đặt }k=x^2-4x,\text{ta có:}\)

\(\left(x^2-4x\right)^2-2.\left(x^2-4x\right)=15\)

\(\Leftrightarrow k^2-2k=0\)

\(\Leftrightarrow k^2-2k+1=16\)

\(\Leftrightarrow\left(k-1\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}k-1=4\\k-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}k=5\\k=-3\end{cases}}}\)

\(\text{Với }k=5,\text{Ta có: }x^2-4x=5\Rightarrow x^2-4x-5=0\Rightarrow x^2-5x+x-5=0\)

\(\Rightarrow x.\left(x-5\right)+\left(x-5\right)=0\Rightarrow\left(x+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

\(\text{Với }k=-3,\text{ta có: }x^2-4x=-3\Rightarrow x^2-4x+3=0\Rightarrow k^2-3x-x+3=0\)

\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\Rightarrow\left(x-1\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy...

4 tháng 8 2018

\(4x^2+4x-3=0\)

\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)

\(\left(2x+1\right)^2-2^2=0\)

\(\left(2x+1-2\right).\left(2x+1+2\right)=0\) 

\(\left(2x-1\right).\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

\(x^4-3x^3-x+3=0\)

\(x^3.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right).\left(x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

\(x^2.\left(x-1\right)-4x^2+8x-4=0\)

\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)

\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)

\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)

\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)

\(\left(x-1\right).\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(\begin{cases}x=1\\x=2\end{cases}\)

Tham khảo nhé~