Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(4^x+12.2^x+32=0\)
<=> \(\left(2^x\right)^2+2.6.2^x+36-4=0\)
<=> \(\left(2^x+6\right)^2-4=0\)
<=> \(\left(2^x+6+2\right)\left(2^x+6-2\right)=0\)
<=> \(\left(2^x+8\right)\left(2^x+4\right)=0\)
<=> \(\left[{}\begin{matrix}2^x+8=0\\2^x+4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}2^x=-8\\2^x=-8\end{matrix}\right.\) ( Vô lý )
Vậy phương trình vô nghiệm .
=>(2^x)^2-12*2^x+32=0
=>(2^x-4)(2^x-8)=0
=>x=3 hoặc x=2
\(4^x-12.2^x+32=0\)
⇒ \(2^x.2^x-4.2^x-8.2^x+4.8=0\)
⇒ \(2^x\left(2^x-4\right)-8\left(2^x-4\right)=0\)
⇒ \(\left(2^x-4\right)\left(2^x-8\right)=0\)
⇒ \(\left[{}\begin{matrix}2^x-4=0\\2^x-8=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2^x=2^2\\2^x=2^3\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)\(4^x-12.2^x+32=0\Leftrightarrow\left(2^x\right)^2-2.6.2^x+6^2-4=0\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\Leftrightarrow\orbr{\begin{cases}2^x-8=0\\2^x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2^x=8\\2^x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=2^3\\2^x=2^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
Vậy \(S=\left\{2;3\right\}\)
đặt: \(\left\{{}\begin{matrix}2^x=t\\t>0\end{matrix}\right.\)
\(t^2-12t+32=0\Leftrightarrow t^2-2.6t+36=4\)
\(\left(t-6\right)^2=2^2\Rightarrow\left[{}\begin{matrix}t=8\\t=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Ta có : 4x = (2x)2 .
=> 4x - 12.2x + 32 = 0 <=> (2x)2 - 12.2x + 36 - 4 = 0
<=> (2x - 6 )2 - 4 = 0
<=> (2x - 6 - 2 ).( 2x - 6 + 2 ) = 0
<=> ( 2x - 8 ).( 2x - 4 ) = 0 .
=> \(\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\) => \(\left[{}\begin{matrix}2^x=2^3\\2^x=2^2\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)
\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)
\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)
Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)
Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)
V...\(S=\varnothing\)
\(b.4^x-12.2^x+32=0\)
\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)
\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
V...\(S=\left\{2;3\right\}\)
^^ đúng ko ta
a) (x+1)(x+2)(x+5)(x+6)-60=0
[(x+1)(x+6)][(x+2)(x+5)]-60=0
(x^2 + 7x + 6)(x^2 + 7x + 10) - 60 = 0
đặt t = x^2 + 7x + 8
pt trở thành
(t-2)(t+2)-60=0
t^2 - 64=0 .....
t=8 hoặc t=-8.
tìm x ....