K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

haizz!v~ cả you.tham khảo BĐT cauchy nhé!

17 tháng 9 2020

a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)

\(=\sqrt{7+4\sqrt{7}+4}-\sqrt{7-4\sqrt{7}+4}\)

\(=\sqrt{\left(\sqrt{7}+2\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}\)

\(=\left|\sqrt{7}+2\right|-\left|\sqrt{7}-2\right|\)

\(=\sqrt{7}+2-\sqrt{7}+2=4\)

17 tháng 9 2020

a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}=\sqrt{\left(2+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}=2+\sqrt{7}-\sqrt{7}+2=4\)

b) \(A=\sqrt{11-4\sqrt{6}}-\sqrt{11+4\sqrt{6}}\)

\(\Rightarrow A^2=11-4\sqrt{6}-2\sqrt{\left(11-4\sqrt{6}\right)\left(11+4\sqrt{6}\right)}+11+4\sqrt{6}\)

\(A^2=22-2\sqrt{121-96}\)

\(A^2=22-2\sqrt{25}=22-2.5=12\)

\(\Rightarrow A=-\sqrt{12}\)(Chú ý \(A< 0\))

28 tháng 10 2020

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)

\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)

25 tháng 7 2023

Bài 2:

a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)

\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)

\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)

\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)

\(=8\sqrt{5}\)

b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(=\sqrt{7}-2-\sqrt{7}-3\)

\(=-5\)

25 tháng 7 2023

\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)

1 tháng 6 2017

a) S=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}.\)

\(\sqrt{2}.\)S=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}.\)

\(\sqrt{2}.\)S =\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(\sqrt{2}.\)S=|\(\sqrt{7}\)-1|+|\(\sqrt{7}\)+1|=\(\sqrt{7}\)-1-\(\sqrt{7}\)-1=- 2

S= - \(\sqrt{2}.\)

1 tháng 6 2017

b)\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}=...\)

NV
20 tháng 6 2021

\(B=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2+\sqrt{7}\right)^2}\)

\(B=\left|3-\sqrt{7}\right|+\left|2+\sqrt{7}\right|\)

\(B=3-\sqrt{7}+2+\sqrt{7}\)

\(B=5\)

31 tháng 10 2023

b) B= (2 + sqrt(7)) * sqrt(11 - 4sqrt(7)) - sqrt 20+5 sqrt 5 ...2

 

19 tháng 6 2021

\(B=\sqrt{\left(3-\sqrt{7}\right)^2+\sqrt{11+4\sqrt{7}}}\)

\(=\sqrt{9-6\sqrt{7}+7+\sqrt{\left(2+\sqrt{7}\right)^2}}\)

\(=\sqrt{16-6\sqrt{7}+2+\sqrt{7}}\)

\(=\sqrt{18-5\sqrt{7}}\)

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)