Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n+3 chia hết cho n-1
=> n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)
=> n-1 thuộc Ư(4)={1;2;4}
Với n-1=1 => n=2
với n-1=2=>n=3
Với n-1=4=>n=5
Vậy...
b) 4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)={1;5}
Với 2n-1=5=> 2n=6=> n=3
Với 2n-1=1=> 2n=2=> n=1
Vậy...
c) 4n-5 chia hết cho 2n-1
=> 4n-2+7 chia hết cho 2n-1
=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)
=> 2n-1 thuộc Ư(7)={1;7}
Với 2n-1=1=> n=1
Với 2n-1=7=> n=4
Vây..
k cho mk
4n+3 chia hết cho 2n+1
=> 4(n+1)-1 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 \(\in\)Ư(1)=1
=> n=0
Vậy n=0
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
4n+21 chia hết cho 2n+3
=> 4n+6+15 chia hết cho 2n+3
Vì 4n+6 chia hết cho 2n+3
=> 15 chia hết cho 2n+3
=> 2n+3 thuộc Ư(15)
Bạn tự kẻ bảng làm nốt nha.
Ta có \(\frac{4n+21}{2n+3}=\frac{4n+6+15}{2n+3}=\frac{4n+6}{2n+3}+\frac{15}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}+\frac{15}{2n+3}=2+\frac{15}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Nếu 2n + 3 = 1 thì 2n = - 2 <=> n = - 1 (loại)
Nếu 2n + 3 = 3 thì 2n = 0 <=> n = 0 (nhận)
Nếu 2n + 3 = 5 thì 2n = 2 <=> n = 1 (nhận)
Nếu 2n + 3 = 15 thì 2n = 12 <=> n = 6 (nhận)
Vậy n \(\in\) {0;1;6}
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
4n + 3 là số lẻ
2n + 6 là số chẵn
Vì vậy không tồn tại n