Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Bài 1 :
a) Ta có :
\(4n-7=4n+12-19=4.\left(n+3\right)-19\)
Ta thấy \(4.\left(n+3\right)⋮n+3\Rightarrow\left(-19\right)⋮n+3\Rightarrow\left(n+3\right)\inƯ\left(-19\right)\)
\(Ư\left(-19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n+3=1\Rightarrow n=1-3=-2\)
\(n+3=-1\Rightarrow n=-1-3=-4\)
\(n+3=19\Rightarrow n=19-3=16\)
\(n+3=-19\Rightarrow n=-19-3=-22\)
Vậy \(n\in\left\{-2;-4;16;-22\right\}\)
BÀI 2:
a chia 8 dư 7 \(\Rightarrow\)\(a-7\)\(⋮\)\(8\)\(\Rightarrow\)\(a-7+128\)\(⋮\)\(8\)\(\Rightarrow\)\(a+121\)\(⋮\)\(8\)
a chia 125 dư 4 \(\Rightarrow\)\(a-4\)\(⋮\)\(125\)\(\Rightarrow\)\(a-4+125\)\(⋮\)\(125\)\(\Rightarrow\)\(a+121\) \(⋮\)\(125\)
suy ra: \(a+121\)\(\in BC\left(8;125\right)=B\left(1024\right)=\left\{0;1024;2048;3072;...\right\}\)
\(\Rightarrow\)\(a\)\(\in\left\{903;1927;....\right\}\)
mà \(100< a< 1000\)
\(\Rightarrow\)\(a=903\)
4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
=> 2.(2n-1)+5 chia hết cho 2n-1
mà 2.(2n-1) chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 \(\in\)Ư(5)={1; 5}
+) 2n-1=1
=> 2n=2
=> n=1
+) 2n-1=5
=> 2n=6
=> n=3
Vậy n \(\in\){1; 3}.
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
a) n \(\in\)Z
4n - 5 + 1 \(⋮\)2n
4n là số chẵn nên chia hết cho 2
- 5 là số lẽ nên chia cho 2 dư 1
Vậy 4n - 5 + 1 chia hết cho 2 với mọi giá trị của n
mà 2n cũng là số chẵn
nên 4n - 5 \(⋮\)2n - 1 với mọi giá trị n
tìm n thuộc Z
a) 4n-5 chia hết cho (2n -1)
<=> 4n-2-3 chia hết (2n-1)
<=> 2(2n-1)-3 chia hết(2n-1)
=>-3 chia hết cho (2n-1)
=> 2n-1 =(-3,-1,1,3}
2n={-2,0,2,4}
n={-1,0,1,2}
b) tương tụ
8-n ước của 4={-4,-2-1,1,2,4}
n={12,10,9,7,6,4}
<=>4(n-1) chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}