K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

m thuộc tập hợp R

NV
6 tháng 3 2020

Phương trình luôn có 1 nghiệm \(x=1\)

Xét \(x^2+2\left(m+3\right)x+4m+12=0\) (1)

Để pt đã cho có 3 nghiệm thỏa mãn yêu cầu thì (1) có 2 nghiệm pb khác 1 và lớn hơn -1

\(\Rightarrow\left\{{}\begin{matrix}\Delta'>0\\a+b+c\ne0\\-1< x_1< x_2\end{matrix}\right.\)

Ta có: \(\Delta'=m^2+6m+9-4m-12=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}>-1\\\left(x_1+1\right)\left(x_2+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>-2\\x_1x_2+x_1+x_2+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(m+3\right)>-2\\4m+12-2\left(m+3\right)+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>-\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Kết hợp lại ta được: \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

21 tháng 4 2017

\(\Delta'=\left(1-2m\right)^2-5m^2+4m-2\)

\(\Delta'=1-4m+4m^2-5m^2+4m-2\)

\(\Delta'=-m^2-1\le-1\)

Vậy phương trình luôn vô nghiệm do \(\Delta'< 0\forall m\)

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

NV
15 tháng 1

BPT đã cho vô nghiệm khi và chỉ khi BPT \(f\left(x\right)\le0\) nghiệm đúng với mọi x

TH1: \(\left\{{}\begin{matrix}2m^2+m-6=0\\2m-3=0\end{matrix}\right.\) \(\Rightarrow m=\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta=\left(2m-3\right)^2+4\left(2m^2+m-6\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\12m^2-8m-15\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< \dfrac{3}{2}\\-\dfrac{5}{6}\le m\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{6}\le m< \dfrac{3}{2}\)

Kết hợp 2 trường hợp ta được \(-\dfrac{5}{6}\le m\le\dfrac{3}{2}\)

30 tháng 6 2020

Đặt x^2 = t \(\ge\)

phương trình trở thành: \(t^2+mt+4=0\)(1)

Phương trình ban đầu có 4 nghiệm phân biệt <=> phương trình (1) có hai nghiệm phân biệt dương 

<=> \(\hept{\begin{cases}\Delta>0\\-\frac{b}{a}>0\\\frac{c}{a}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-16>0\\-m>0\\4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2>16\\m< 0\end{cases}}\Leftrightarrow m< -4\)

Kết luận:...

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

30 tháng 6 2020

\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)

<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)

Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2 

<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)

NV
4 tháng 1

Áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_A+x_B=2x_P=-2\left(1\right)\\x_B+x_C=2x_M=4\left(2\right)\\x_A+x_C=2x_N=4\left(3\right)\end{matrix}\right.\) 

Cộng vế: \(2x_A+2x_B+2x_C=8-2=6\Rightarrow x_A+x_B+x_C=3\) (4)

Trừ vế cho vế (4) lần lượt với (1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}x_C=5\\x_A=-1\\x_B=-1\end{matrix}\right.\)

Tương tự ta có: \(\left\{{}\begin{matrix}y_A+y_B=2y_P=6\\y_B+y_C=2y_M=0\\y_A+y_C=2y_N=4\end{matrix}\right.\) \(\Rightarrow y_A+y_B+y_C=5\)

\(\Rightarrow y_C=-1;y_A=5;y_B=1\)

Vậy \(A\left(-1;5\right);B\left(-1;1\right);C\left(5;-1\right)\)