K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

$4^{30}=(4^3)^{10}=64^{10}> 48^{10}=(2.24)^{10}=2^{10}.24^{10}> 3.24^{10}$

11 tháng 8 2019

\(3\times24^{10}\)

\(=3\times\left(2^3\times3\right)^{10}\)

\(=3\times3^{10}\times\left(2^3\right)^{10}\)

\(=3^{11}\times2^{30}\)

\(=3^{11}\times\left(2^2\right)^{15}\)

\(=3^{11}\times4^{15}\)

Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)

Nên \(3^{11}\times4^{15}\)\(4^{15}\times4^{15}=4^{30}\)

Do đó : \(3\times24^{10}\)\(4^{30}\)

Vậy \(2^{30}+3^{30}+4^{30}\)\(3\times24^{10}\)

27 tháng 9 2017

2^30 + 3^30 +4^30 va 3 x 24^10

=10^30 và 72^10

=(10^3)^10 va 72^10

=30^10 va 72^10

vì 30 nhỏ hơn 72 

nên 30^10 < 72^10

chắc chắn 100%

27 tháng 9 2017

Ta có: 3.2410=311.415

\(\Rightarrow\)430=415.415

415>311( vì phần nguyên bé và mũ cũng bé nên ta có 415>311)

\(\Rightarrow\)3.2410<430<230+320+430

24 tháng 8 2016

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<4^30<2^30+3^20+4^30

24 tháng 8 2016

<

TÍCH NHA

25 tháng 9 2018

Áp dụng bđt Cosi với 3 số thực ko âm và ko bằng nhau ta có : 

\(\frac{2^{30}+3^{30}+4^{30}}{3}>\sqrt[3]{2^{30}.3^{30}.4^{30}}\)

\(\Leftrightarrow\)\(2^{30}+3^{30}+4^{30}>3\sqrt[3]{\left[\left(2.3.4\right)^{10}\right]^3}\)

\(\Leftrightarrow\)\(2^{30}+3^{30}+4^{30}>3\sqrt[3]{\left(24^{10}\right)^3}\)

\(\Leftrightarrow\)\(2^{30}+3^{30}+4^{30}>3.24^{10}\)

Vậy \(2^{30}+3^{30}+4^{30}>3.24^{10}\)

Chúc bạn học tốt ~ 

a: Ta có: \(81^{125}=3^{500}\)

\(27^{130}=3^{390}\)

mà 500>390

nên \(81^{125}>27^{130}\)

11 tháng 4 2016

230+320+430>3.2410

k minh minh k lai

11 tháng 4 2016

???, là sao  bạn